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[1] Although weather regimes are often used as a primary step in many statistical
downscaling processes, they are usually defined solely in terms of atmospheric variables
and seldom to maximize their correlation to observed local meteorological phenomena.
This paper compares different clustering methods to perform such a task. The correlation
clustering model is introduced to define regimes that are well correlated to local‐scale
precipitation observed on seven French Mediterranean rain gauges. This clustering method
is compared to other approaches such as the k‐means and “expectation‐maximization”
(EM) algorithms. The two latter are applied either to the main principal components of
large‐scale reanalysis data (geopotential height at 500 mbar and sea level pressure)
covering the Mediterranean basin or to the canonical variates associated with large scale
and resulting from a canonical correlation analysis performed on reanalyses and local
precipitation. The weather regimes obtained by the different approaches are compared,
with a focus on the “extreme content” captured within the regimes. Then, cost functions
are developed to quantify the errors due to misclassification, in terms of local precipitation.
The different clustering approaches show different misclassification and costs. EM applied
to canonical variates appears as a good compromise between the other approaches,
with high discrimination, overall for extreme precipitation, while the precipitation costs
due to bad classification are acceptable. This paper provides tools to help the users choose
the clustering method to be used according to the expected goal and the use of the
weather regimes.

Citation: Vrac, M., and P. Yiou (2010), Weather regimes designed for local precipitation modeling: Application to the
Mediterranean basin, J. Geophys. Res., 115, D12103, doi:10.1029/2009JD012871.

1. Introduction and State of the Art

[2] Weather regimes (WRs) of the atmospheric circulation
provide a simple approach to characterize the main atmo-
spheric variability over a given region. A weather regime
can be defined as a recurrent large‐scale spatial atmospheric
structure (a deformation radius of at least several hundreds
of kilometers), usually described in terms of circulation
variables (geopotential height, pressure, etc.). It is generally
assumed that the spatial specificity of aWR induces recurrent
local‐scale meteorological conditions at some correlated
locations. Many different methods can be employed to define
WRs. Those methods can be divided into subjective and
objective approaches.
[3] In the subjective definition, a meteorological expert

decides what the most recurrent WRs are, and how a large‐
scale field (e.g., characterizing a day) must be associated (or
attributed) to one of the regimes. The most famous subjective
WRs are the Lamb weather types [Lamb, 1972] for Great

Britain, or Hess and Brezovsky regimes [Hess and Brezowski,
1977] for central Europe. It is clear that this approach requires
a strong meteorological knowledge of the atmospheric con-
ditions over the region of interest. Moreover, it presents the
advantage of allowing the expert to subjectively adapt the
WRs according to their use. For example, if the WRs have to
be related to local‐scale precipitation or to wind, even though
they are defined in terms of the same atmospheric variable
(e.g., geopotential height), the WRs may be slightly different
to take into account local and environmental specificities of
the two variables.
[4] The objective approach is based on mathematical

clustering methods to automatically group together large‐
scale atmospheric fields that are close to each other, and to
create different clusters for fields that are very different from
each other. Many methods have been developed and applied
to perform such a task. The most employed is certainly the
k‐means algorithm [Diday et al., 1974], iteratively calcu-
lating the center of each cluster (initially randomly chosen)
and allocating the data to the cluster whose center is the
closest. The k‐means algorithm has been used, for example, to
describe recurrent or quasi‐stationary North Atlantic weather
regimes [Michelangeli et al., 1995], to characterize climatic
trends through circulation types over Europe [Huth, 2001], as
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a basis for a heat watch warning system [Sheridan and
Kalkstein, 1998], to relate extreme temperature and precipi-
tation events to North Atlantic WRs [Yiou and Nogaj, 2004],
or to study teleconnection patterns [Cassou, 2008].
[5] Hierarchical agglomerative clustering (HAC) [Ward,

1963] methods have also been quite popular the last dec-
ades. From all elements considered as separated clusters,
HAC generates a tree, successively grouping two clusters
into one until the chosen number of clusters is reached. In
climate studies, HAC has been employed, for example, to
derive a climatology of severe storms in Virginia [Davis et
al., 1993]; to define climate regions in the northern plains
[Bunkers et al., 1996]; to short‐ and medium‐range pre-
dictability of weather regimes [Vannitsem, 2001]; or to
identify winter weather regimes for the Pacific–North
American sector [Casola and Wallace, 2007].
[6] The “expectation‐maximization” (EM) method

[Dempster et al., 1977] has also shown useful climate
applications. EM determines weather regimes through a
mixture of Gaussian distribution, where each distribution
is statistically associated to a WR. Smyth et al. [1999] used
EM to define regimes in Northern Hemisphere height fields,
while Gaffney et al. [2007] took advantage of EM to cluster
wintertime extratropical cyclones tracks. EM showed some
significant differences in WRs over Eastern US in compar-
ison to k‐means [Vrac et al., 2007a], and also provided
meaningful WRs for precipitation downscaling [Vrac et al.,
2007b]. The EM approach has also been extended through
a mixture of copula functions applied to determine weather
types from vertical atmospheric profiles of humidity and
temperature [Vrac et al., 2005].
[7] Artificial neural networks can also be designed to

perform clustering and define WRs through the so‐called self
organizing map (SOM) approach. For example, Hewitson
and Crane [2002] defined WRs through SOM and em-
ployed them as conditional bases to downscale daily pre-
cipitation, and Leloup et al. [2008] used SOM to compare
how different general circulation models (GCM) simulate
the spatial characteristics of the twentieth century El Niño‐
Southern Oscillation (ENSO).
[8] Fuzzy rules are issued from artificial intelligence

methods and can be used for clustering by optimizing
chosen objective functions. For example, this type of rules
was successfully employed by Pongracz et al. [2001] to
determine monthly patterns of precipitation over Hungary,
and by Bárdossy et al. [2002] to identify large‐scale WRs
to condition temperature and precipitation downscaling
models.
[9] Some intercomparison frameworks have been built

to better understand the differences between WRs obtained
from different clustering methods, depending on the region
of interest, the atmospheric variables used, etc. [e.g., Huth,
1996; Vrac et al., 2007a](or the COST 733 project on
“harmonisation and applications of weather type classifica-
tions for European regions,” http://www.cost733.org/). The
main conclusions generally indicate that there is no “best”
clustering method, and that the choice largely depends on
the region and its specificity, the variable of interest and the
goal that has to be reached. However, those frameworks
were not intended to compare whether or not the insertion of
local information into the clustering method improves the
“applicability” of the obtained regimes.

[10] The questions we treat here are: Does the inclusion of
observed local information into the clustering of large‐scale
atmospheric fields help to define weather regimes that are
well discriminated in terms of local‐scale precipitation
characteristics? Does this inclusion perturb/complicate the
attribution process when a new day (i.e., a new field) arises
and has to be classified? What is the cost of misclassifica-
tion, for example, when simulating precipitation based
on the characteristics conditional on the WRs? This study
aims at answering those questions by comparing five dif-
ferent clustering methods corresponding to three objective
approaches.
[11] In section 2, the data used in this study are presented,

as well as the different methodologies employed to define
weather regimes. Those methodologies involve various
amounts of local‐scale information about precipitation and,
therefore, do not generate the same WRs. The clustering
methods are applied on the Mediterranean basin data in
section 3, and a common number of WRs is determined and
fixed to compare the methods. To understand the implica-
tion of misclassification of the obtained WRs when used to
simulate precipitation (say for new, potentially future, days),
pattern attribution performances are performed in section 4
and precipitation cost functions are developed and applied.
A summary and a discussion of the results are provided in
section 5, while conclusions and some perspectives are
presented in section 6.

2. Data and Clustering Methodologies

[12] This study is performed on the French southern
Mediterranean region. Indeed, this region presents some
geographical specificities accentuating the natural variability
of precipitation. The Mediterranean sea with its chiseled
coast, the proximity of three chains of mountains (the Alps,
the Pyrénées, and the Massif Central), and the very present
urbanization strongly enhance the spatial and temporal vari-
ability of precipitation in this region. As a consequence,
extreme events of precipitation are relatively frequent. This
makes French Mediterranean climate a difficult but interest-
ing region to model.

2.1. Local‐ and Large‐Scale Data

[13] Local‐scale data correspond to daily times series of
precipitation ranging from 1 January 1959 to 31 December
2004 for seven French rain gauges extracted from the
“European Climate Assessment & Dataset” (ECA&D)
[Klein Tank et al., 2002]. Those rain gauges are located at
(1) Marseille, (2) Perpignan, (3) Mont‐Aigoual, (4) Le
Massegros, (5) Nimes, (6) Orange, and (7) Sète. Large‐
scale predictors are NCEP/NCAR (National Centers for
Environmental Prediction‐National Center for Atmospheric
Research) reanalysis data [Kalnay et al., 1996] sea level
pressure (SLP) and geopotential heights at 500 mbar (Z500),
with 2.5° of horizontal resolution. Both variables cover the
region [−15°E; 42.5°E] × [27.5°N; 50°N] encircling the
Mediterranean Sea, and corresponding to 240 grid cells.
This domain is an attempt to visualize the main weather
regimes that are typical of the Mediterranean region. Indeed,
previous studies [e.g., Plaut and Simonnet, 2001] have
found relative correlations between South of France and
the North Atlantic region, which is much more classically
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studied. Here, the domain is arbitrarily chosen to test if the
region loosely encompassing the Mediterranean sea is able to
provide valuable large‐scale information linked to observed
local‐scale (potentially extreme) precipitation in the south of
France. Note that this region is chosen sufficiently large to
partially capture some features of the North Atlantic region,
hence keeping a part of the well‐known associated variability.
We used Z500 to define WRs, like, for example, in work by
Michelangeli et al. [1995] or Yiou and Nogaj [2004]. How-
ever, information at much lower altitude has shown useful
[e.g., Vrac et al., 2007b] to relate large‐ and local‐scale fea-
tures, and SLP is generally considered as valuable informa-
tion for precipitation [e.g.,Busuioc et al., 2008]. Indeed, Z500
is a spatially smooth variable and SLP is more sensitive
to horography and land properties, and thus, may allow to
capture more spatial variability. In the following, only
winter months (November–March) are considered, and we
removed seasonal cycles and a linear trend to those large‐
scale predictors.
[14] A few studies suggested that large‐scale WRs may be

related to local‐scale precipitation in the Mediterranean or
the Alps [e.g., Plaut and Simonnet, 2001] and may also
influence heavy precipitation [e.g., Plaut et al., 2001;
Sanchez‐Gomez and Terray, 2005; Sanchez‐Gomez et al.,
2008]. Plaut et al. [2001] looked at circulation regimes
conditionally on intense local precipitation. Our study is more
general, since, here, all days are considered (i.e., not only
those with high precipitation) to investigate the links between
WRs obtained from different clustering methods, and their
informative content in terms of local precipitation, and par-
ticularly extremes. To do so, three approaches are used,
comprising five methods: (1) the k‐means and EM algorithms
applied to the main principal components from a principal
component analysis (PCA) performed on the NCEP/NCAR
reanalyses; (2) the k‐means and EM algorithms applied to
the main canonical variates (associated to reanalyses) from a
canonical correlation analysis (CCA) performed between
reanalyses and local precipitation (CCA is summarized in
section 2.3); and (3) the correlation clustering model (CCM)
developed by Fern et al. [2005] (detailed in section 2.4).
Table 1 summarizes the use of those methods, which are
detailed in the following.

2.2. Expectation‐Maximization and k‐Means
Algorithms

[15] In those two methods, a PCA is first applied to the
large‐scale variables (Z500 and SLP), and the first 10 prin-
cipal components (PCs), corresponding to 95% of variance,
are kept. Then, those PCs are used as inputs of the EM and
k‐means algorithms.

[16] In the EM approach, we estimate f, the multivariate
probability density function (PDF) of the PCs, as a weighted
sum (or mixture) of K parametric PDFs fk (k = 1,…, K)
[Pearson, 1894] with parameters ak:

f ðxÞ ¼
XK

k¼1

�k fkðx;akÞ; ð1Þ

where pk are called the “mixture ratios” and correspond to
the prior probability of belonging to component k, or the kth
WR. In this formulation, the kth WR, say Wk, is associated
with and is actually defined by the kth PDF fk. In this work,
we consider that the fk are Gaussian PDFs. Hence, we deal
with a mixture of Gaussians where ak = (mk, Sk) with mk a
vector of means, and Sk the variance‐covariance matrix of
fk. For a chosen number K, the estimation‐maximization
(EM) algorithm [Dempster et al., 1977; McLachlan and
Peel, 2000] is used to estimate the parameters of the mix-
ture model. It consists of two successive and iterative steps
of expectation and maximization of the so‐called complete
log likelihood. Various constraints are tested on the variance
matrix (it can be spherical, diagonal, or ellipsoidal and with
equal or varying volumes) to avoid overfitting (i.e., reduce
the number of parameters to be estimated). For the chosen
variance model and K, WRs are obtained by applying the
principle of posterior maximum. For regime Wk,

Wk ¼ x;�k fkðx;akÞ � �j fjðx;ajÞ; 8j ¼ 1; . . . ;K
� �

: ð2Þ

Hence, each x (i.e., each day characterized by its PCs x) is
attributed to the regime for which the associated model
maximizes the posterior probability that x belongs to this
regime. This approach has already been successfully applied
to determine WRs over eastern United States [Vrac et al.,
2007a], which are well related to local precipitation [Vrac
et al., 2007b].
[17] The k‐means algorithm is an iterative clustering pro-

cess. First, a random clustering is performed; that is, every day
(and their associated PCs) is randomly assigned to K clusters.
Then, the iterative process is as follows.
[18] 1. Once all the days have been clustered in the pre-

vious step, the center of each cluster (also called “centroid”)
is calculated. The center is the average of all the days within
the cluster; that is, its coordinates are the arithmetic mean for
each dimension separately over all the days in the cluster.
[19] 2. Then, the k‐means algorithm assigns each day

to the cluster whose center is the nearest according to the
Euclidean distance.
[20] 3. If the obtained clusters are the same as (or, according

to a given criterion, not too different from) the clusters at the

Table 1. Methods Summarizing the Analysis Procedurea

Clustering Methods PCA CCA WRs Construction Scale

CCM ‐ WR metric large and local
k‐means information reduction ‐ large
EM information reduction ‐ large
k‐means(w) ‐ WR metric on w CVs large and local
EM(w) ‐ WR metric on w CVs large and local

aClustering Method indicates the name of the clustering method. PCA and CCA give the type of use of PCA and CCA, respectively (a dash indicates no
PCA or no CCA). WRs Construction Scale indicates the scale information used to construct the WR.
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previous iteration, then stop: the clusters are the weather re-
gimes. Otherwise, go back to step 1.
[21] This algorithm strongly depends on the initialization

step (i.e., initial random clustering) and generally has to be
performed several times to retain the resulting regimes
maximizing a criterion such as the intraclass variance [e.g.,
Michelangeli et al., 1995].
[22] Those two methods are applied to PCs associated to

large‐scale data. Hence, they do not use any local‐scale
information on precipitation. To incorporate such informa-
tion, EM and k‐means are also applied to canonical variates
(CVs) associated to large‐scale data, obtained from a canonical
correlation analysis (CCA) performed between reanalysis
data and observed precipitation time series. In the following,
such an use of k‐means and EM will be denoted k‐means(w)
and EM(w). As a reminder, the basics of CCA are provided in
section 2.3.

2.3. Basics of Canonical Correlation Analysis

[23] Our goal is to define large‐scale recurrent structures
that are correlated to local‐scale precipitation characteristics.
Linear correlations between two data sets can be detected
by canonical correlation analysis (CCA) [Hotelling, 1936;
Barnett and Preisendorfer, 1987]. CCA is closely related to
the principal component analysis (PCA), which determines
linear combinations of the variables in the initial data set to
obtain new variables (i.e., principal components denoted
PCs) maximizing the variance. In the same way, a CCA
computes linear combinations of the variables of two initial
data sets to obtain two new sets of variables (i.e., canonical
variates denoted CVs) maximizing the correlation between
the CVs.
[24] Let X = (X1,…, Xn) and Y = (Y1,…, Ym) be two

vectors of random variables to be related. In this study, X
has seven dimensions and is associated to local precipitation
observed at the seven rain gauges in French Mediterranean
region. Y has 480 dimensions (corresponding to twice the
number of NCEP grid cells) and is associated to the large‐
scale reanalysis data. CCA transforms pairs of original cen-
tered data X′ and Y′ into sets of new variables, the canonical
variates, vi and wi, defined by

vi ¼ AT
i X

0 ¼
Xn

j¼1

ai;jX
0
j ; i ¼ 1; . . . ;minðn;mÞ ð3Þ

wi ¼ BT
i Y

0 ¼
Xm

j¼1

bi;jY
0
j ; i ¼ 1; . . . ;minðn;mÞ; ð4Þ

with the constraint that vi+1 and wi+1 are not correlated with
any previous pair of CVs, and where A and B are matrices
whose lines Ai = (ai1,…, ain) and Bi = (bi1,…, bim) are called
“canonical vectors.” It is not necessary for the spatial domains
associated to X and Y to be the same, and indeed in the
applications of CCA appeared in the literature, they are usu-
ally different. The number M of pairs of canonical variates
that can be extracted from the two data sets is equal to the
smaller of the dimension of X and Y, that is, M = min(n, m).
Moreover, the construction of the CVs ensures that

corrðv1;w1Þ � corrðv2;w2Þ � � � � � corrðvM ;wM Þ ð5Þ

and that corr(vp, wq) = rp if p = q, and 0 if p ≠ q. In practice,
CCA can be performed according to different approaches
(e.g., singular value decomposition, eigendecomposition)
that can be retrieved with much more details, for example,
from Wilks [2006].

2.4. Correlation Clustering Model via Mixture of CCAs

[25] Another clustering approach is now suggested to take
even more advantage of the CCA. This approach is based on
the method initially developed by Fern et al. [2005] to relate
vegetation and precipitation. It consists in a mixture model
of CCAs. Indeed, while one single CCA allows to detect
linear correlation between two data sets, this model introduces
nonlinearities through piecewise linear correlations. Themain
idea of the “correlation clustering mixture” (CCM) is to
gather and separate data (here days) in groups (or clusters)
that have the “best” CCA models, i.e., with the highest cor-
relation between CVs inside each group (i.e., each WR).
Hence, each obtained cluster is characterized by its own CCA
model. Note that the CCA models are not obtained a poster-
iori of the clustering: the clusters are designed to optimize the
CCA models.
[26] CCM presented here to obtain K clusters is a refor-

mulation of the method given by Fern et al. [2005], adapted
to our data. (1) In initialization, the clusters of days are first
randomly chosen, i.e., each day is randomly assigned to one
of theK groups. (2) For modeling, for each cluster k = 1,…,K,
a CCA is performed to construct the kth CCA model CMk =
{(vj

k, wj
k), rj

k, (Aj
k, Bj

k); j = 1,…, M}, corresponding to the
M pairs of CVs, the correlation rj between the jth pair, and
the M pairs of canonical vectors (i.e., projection vectors).
(3) Next, for assignment, each day is reassigned to a cluster
based on its local‐scale precipitation (X) and large‐scale
atmospheric (Y) features and on theKCCAmodels (CM1,…,K).
Details about the reassignment process are given in
equations (6)–(8). (4) If the assignment has changed (i.e., if
the clusters are different) from the previous iteration, go to
step 2. Otherwise, stop, and return the K current clusters
(which are the WRs) and the associated CCA models. The
assignment step is performed as follows: For each cluster k
and its CCA model CMk, a linear regression is modeled for
each pair of CVs:

v̂ kj ¼ ak
j � wk

j þ bk
j ; j ¼ 1; . . . ;M : ð6Þ

Then, for each specific day (characterized by X and Y) and
each cluster k, we compute the CVs under CMk,

vkj ¼ Ak
j X

0fkg and wk
j ¼ Bk

j Y
0fkg; j ¼ 1; . . . ;M ; ð7Þ

where X′{k} and Y′{k} are the centered data of the kth cluster,
and then compute v̂j

k the estimate of vj
k through equation (6),

and the weighted error errk

errk ¼
XM

j¼1

r kj
r k1

� ðv kj � v̂ kj Þ2; ð8Þ

where rj
k/r1

k is the weight of the jth error. The day is then
assigned to the cluster minimizing errk. Note that rj

k (i.e.,
the correlation between vj

k and wj
k) is decreasing while j is

increasing. Hence, the weight of the first error is one, and the
weights for the others are smaller depending on the correla-
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tions between the other CVs. This allows the weighted error
to focus more on the strongly correlated canonical variates.
[27] As a first evaluation, this procedure has been tested

on artificial data simulated conditionally on different clus-
ters defined with specified correlations. As concluded by
Fern et al. [2005], the results (not presented here) have
shown that the clustering procedure was able to retrieve the
right clusters, with the correct correlation parameters.

2.5. Selection of the Number of Clusters

[28] The correlation clustering detailed in section 2.4 re-
quires fixing of K, the number of clusters. This choice is
usually not trivial even though some diagnostic tools may be
available depending on the clustering method used (e.g., the
Bayesian information criterion for EMdeveloped and used by
Schwarz [1978] and Fraley and Raftery [2002]; the “elbow”
criterion for HAC used by [Vrac et al., 2007b]; and the v‐fold
cross‐validation algorithm for k‐means as provided by
Breiman et al. [1984]). However, no method appears as the
“best.”
[29] Moreover, because CCM is a k‐means‐like algorithm

in the sense that it is based on an iterative process of
modeling and assignment, for a given K, the final clusters
are sensitive to the initialization step (i.e., the initial clusters).
Hence, to ensure “optimal” final clusters, a multistart tech-
nique is applied to all clustering methods in the following;
that is, CCM, k‐means, and EM (applied to PCs or CVs) are
run several times, and the clustering maximizing a given
criterion is kept. Depending on the goal, different criteria
could be used but our goal here is to focus on large‐scale
atmospheric patterns correlated to local‐scale extreme events
of precipitation. In that sense, for each given K between 2 and
10, each clustering method is performed 20 times (with
20 random different initializations), and the clustering max-
imizing the information criterion ICq90 is kept. The infor-
mation criterion ICa is defined as in work by Moron et al.
[2008] by

ICa ¼
XK

k¼1

jnk;a � ðpa � nkÞj; ð9Þ

where nk,a is the number of days in cluster k that receive a
rainfall amount greater than a, pa is the probability of such
rainy days in the whole population, and nk is the number of
days in cluster k. As we focus on intense precipitation events,
the rainfall amount a is taken as the 90th quantile (q90) of the
strictly positive rainfall amounts for all times series of the
seven weather stations altogether. This criterion allows us to
quantify the discrimination of the clusters in terms of intense
rainfall (>90th quantile). The higher the value of ICq90, the
more discriminant the clusters are.
[30] The selection of the final number of clusters is done

according to two criteria: the mean correlation (cm) and the
weighted correlation (cw), both computed from the “optimal”
clusters for each number K = 2,…, 10 of clusters. For each
given K, those correlation criteria are computed by

cmðKÞ ¼ 1

K

XK

k¼1

rk1 ð10Þ

cwðKÞ ¼ 1

N

XK

k¼1

ðrk1 � NkÞ; ð11Þ

where r1
k is the correlation of the first pair of canonical variates

(v1,w1) computed from cluster k,N is the total number of days
in the whole population, and Nk is the size (i.e., number of
days) of cluster k. The final selected number of clusters must
yield acceptably high cm and cw criteria. While cm provides a
value of correlation averaged over all the clusters, cw weights
each intracluster correlation by the number of days allocated
to each cluster. Hence, a small cluster will have a smaller
weight in cw than a large cluster. This can help to choose a
number of clusters adapted to the goal to be reached. For
example, if the phenomena to be captured by the regimes are
not a priori related to the size of the clusters (i.e., if two re-
gimes with different sizes must have an equal importance), cm
will provide useful information. However, if the size of the
clusters matters, weights have to be inserted, and cw is an
option to do so. In our case, both criteria are used to enlarge
the comparisons of the different clustering results.

Figure 1. Median ICq90 values (computed from the seven stations) for the five tested clustering methods
(see Table 1 for labels) and for a number of clusters ranging from 2 to 10.
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[31] The five methods, corresponding to the three ap-
proaches, are now applied and compared on real data for the
French Mediterranean basin.

3. Results on the Mediterranean Basin

3.1. Cluster Selection

[32] As explained in section 2, for each number of clusters
K = 2,…, 10, the five clustering methods are performed
20 times (with 20 different initializations), and only the
clustering maximizing ICq90 is kept for each K. According to
the size of the data set and the number of regimes, the CCM,
EM and EM(w) methods can be computationally expensive.
However, it has to be noted that a larger number of “runs”
does not provide results significantly different (not shown). In
other words, 20 runs are enough to capture and estimate the
main weather regimes (for each of the five methods). The
median ICq90 values (computed from the seven stations) from
the five clustering methods are shown in Figure 1. We see
that, although the curves are relatively flat, the different
methods indicate different optimal ICq90 values (i.e., differ-
ent highest values), with some local optima. However, CCM
and EM(w) provide higher ICq90 values than those given by
the other methods. Hence, in general, the discrimination of
the intense precipitation events is more efficient with CCM
and EM(w).
[33] The selection of the number of clusters is done

through the cm and cw criteria. Figure 2 presents the results
for both criteria and the five clustering methods. The clas-
sical k‐means applied to PCs does not provide much dif-
ferences between cm and cw. This is due to the fact that this
approach tends to provide clusters of equivalent size (i.e.,
with similar number of days). While the variability of the
number of days per pattern is higher, we observe a similar
behavior for the correlation curves from EM applied to PCs.
For those two methods, cm and cw increase almost linearly
with the number of clusters. Indeed, for those PCs‐based
methods, the two indices will have a tendency to increase
until the number of clusters is equal to the number of days.
[34] Although k‐means(w) and EM(w) present higher

ICq90 values than classical k‐means and EM (Figure 1),
they show cm and cw values that are lower than those from
k‐means and EM applied to PCs. Indeed, here, one has to

keep in mind that, for each method tested, the retained
clustering result is the one maximizing ICq90 (for each
number K of clusters). Hence, our goal is to obtain clusters
with a good “discrimination” of the intense precipitation
events. In this exercise, by including local‐scale infor-
mation through w‐CVs, EM(w) and k‐means(w) are more
efficient than classical EM and k‐means. However, a
consequence is that those two CVs‐based methods show a
high correlation between large‐ and local‐scale data for
clusters related to intense precipitation (and thus containing a
small number of days), and a relatively low correlation for the
other clusters (with more days). Consequently, the correlation
criteria cm and cw are lower for EM(w) and k‐means(w) than
for their classical versions. Note that, according to the use of
the resulting clusters, there is a trade‐off between the infor-
mation (IC) and the correlation criteria for the selection of the
clustering method.
[35] CCM shows cm values that are clearly higher than

from the other methods. This was expected since CCM
looks for clusters optimizing the CCA models and therefore
maximizing correlation between v and w CVs inside each
cluster. Moreover, CCM has a tendency to provide one rel-
atively large cluster (i.e., with a high number of days, ∼3/5
of the data set), and the others usually much smaller (the last
2/5 about equally distributed). Indeed, CCM looks for large‐
scale structures that are best correlated to intense local‐scale
observations. For a given number of WRs, once the main
extreme events are associated to WRs, the remaining data are
grouped together and associated to one large‐scale structure.
Hence, this cluster gathering about 3/5 of the data set is not
totally surprising. The number of days per cluster from seven
patterns is given in Table 2. This explains the relatively low
cw values for CCM, since the large cluster is associated to
relatively small correlation r between CVs, while the other
clusters (that are smaller in population) have much higher
r values. For CCM, K = 7 clusters provide a clear optimum
for cw and a local optimum for cm, which is close to the
global optimum between 2 and 10 clusters. For those rea-
sons, and for illustration purposes and understanding of
the mechanisms and performances of CCM, the following
comparisons of the clustering methods are based on the
results obtained for K = 7 clusters from each method.

Figure 2. The cm and cw correlation criteria for the five tested clustering methods.
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3.2. Analyses of the Seven‐Cluster Results

[36] In the following analyses, the numbering of the
obtained patterns is random and depends only on each
method. Hence, two clusters with the same numbering but
from two different clustering methods do not necessarily
represent the same physical pattern.
[37] Table 2 presents the number of days per pattern for

each method and the corresponding percentages with respect
to the whole population, for the results in seven clusters.
Figure 3 characterizes the mean positive precipitation in mm

(Figure 3, top), and the probability of rainfall occurrence
(Figure 3, bottom), averaged for the seven rain gauges, for
each pattern from each clustering method. Figure 3 (top and
bottom) allows one to visualize the degree of discrimination
of the WRs in terms of mean occurrence and intensity of
precipitation.
[38] The daily andmonthly seasonal cycles (onNovember–

March) of the frequency of occurrence of each pattern have
been calculated for each clustering method. Those (not shown)
do not present any signal different from one month to another.

Table 2. Number of Days per Pattern for Each Method and Corresponding Percentage With Respect to the Whole Populationa

Patterns

1 2 3 4 5 6 7

CCM 650(9) 385(6) 483(7) 463(7) 4000(58) 413(6) 460(7)
k‐means 1050(15) 1084(16) 647(9) 1053(15) 746(11) 1194(17) 1080(16)
EM 1452(21) 930(14) 259(4) 761(11) 1253(18) 1162(17) 1037(15)
k‐means(w) 1525(22) 1482(22) 466(7) 584(9) 429(6) 1093(16) 1275(19)
EM(w) 952(14) 1656(24) 557(8) 561(8) 1366(20) 430(6) 1332(19)

aCorresponding percentage is given in brackets.

Figure 3. Characterization of the mean (top) positive precipitation in millimeters and (bottom) probabil-
ity of rainfall occurrence, averaged from the seven rain gauges, for each pattern from each clustering
method. Climatological values are indicated by the dashed lines.
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All the frequencies of occurrence are relatively flat and
mostly represent the proportion of each cluster in the whole
population.
[39] As a first evaluation of the correlation between large‐

scale atmospheric variables (Z500 and SLP) and local‐scale
precipitation present in each pattern, the correlation values
between v1 and w1 are summarized in Table 3 (note that the
scatterplots of v1 versus w1 CVs for each pattern from each
clustering method are provided in the auxiliary material).1

Moreover, to identify the main patterns characterizing local‐
scale (potentially intense) precipitation events, Figures 4, 5,

6, 7, and 8 show the spatial distribution of daily rainfall
occurrence as anomalies relative to the long‐term mean for
each station and pattern from the same five tested clustering
methods. Intensity anomalies (not shown) present similar
characteristics, albeit less pronounced.
[40] Although differences of occurrence anomalies exist

between patterns, k‐means and EM applied to PCs (Figures 5
and 6) do not really identify patterns with as strong occur-
rence anomalies as from the three CVs‐based methods. For
example, k‐means(w) defines three patterns (3, 4, and 5) with
relatively high occurrence anomalies, and very good corre-
lations between v1 and w1 CVs (see Table 3, k‐means row).
Nevertheless, those three patterns capture different spatial
distributions. This phenomenon is visible when plotting the

Figure 4. From CCM, spatial distribution of daily rainfall occurrence anomalies (relative to the long‐
term mean).

1Auxiliary materials are available in the HTML. doi:10.1029/
2009JD012871.
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box‐and‐whisker plots, representing the statistical distribu-
tion of the data per cluster and per station through the 25th,
50th, and 75th percentiles, as well as the H and L values,
where H = min[75th percentile + 1.5 × interquartile(25th,
75th), max] and L = max[25th percentile ‐ 1.5 × interquartile
(25th, 75th), min] (not shown). Moreover, the strongest
occurrence anomalies appear in the CCM pattern 1, and in the
EM(w) pattern 6. Those patterns are very similar to each other
in terms of intensity and spatial distribution among the seven
stations (compare pattern 1 in Figure 4 and pattern 6 in
Figure 8b), as well as in terms of Z500 anomaly patterns over
the Mediterranean region presented for those two methods
(CCM and EM(w)) in Figures 9 and 10, respectively: we can
compare pattern 1 in Figure 9 and pattern 6 in Figure 10. A

common structure with strong negative Z500 anomalies over
Spain characterizes the two patterns. This cyclonic structure is
close to the one found by Plaut and Simonnet [2001] with an
atmospheric circulation clustering only, defined conditionally
on intense local precipitation. This type of pattern tends to
bring moist air to western Europe (including Spain and
France), while Italy, Greece and Romania are relatively dry.
SLP maps are not presented but provide equivalent infor-
mation. The other methods (k‐means(w) and overall k‐means
and EM) do not capture exactly this particular anomaly fea-
ture over Spain: it is either less pronounced, larger, or even
shifted (not shown). This can explain why only CCM and EM
(w) defined high precipitation anomalies patterns. Those two
methods also present very similar (high) correlations between

Figure 5. Same as Figure 4 but for k‐means.
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v1 and w1: 0.95 for CCM pattern 1 and (very close to) 1 for
EM(w) pattern 6. This difference is due to the slightly higher
number of days in CCM1 than in EM(w)6 (see Table 2).
Hence, in general, it appears that CCM and CVs‐based
methods (i.e., k‐means(w), and EM(w)) are more discrimi-
nant, at least in terms of strong (occurrence and intensity)
precipitation anomalies, than the classical PCA‐based
methods. For their extreme patterns identified, those three
CCA‐based methods also show very high correlation values
between v1 andw1, ranging from0.94 to 1. “Classical” k‐means
and EM applied to PCs do not seem to be as efficient in such a
context.
[41] The atmospheric structures (Figures 9 and 10)

corresponding to the clusters from CCM and EM(w) are

quite different, when seven clusters are imposed for both
techniques. The similar features include the atmospheric
structure that carries the heaviest precipitation (CCM1 and
EM(w)6). The two other common atmospheric structures
convey similar rainfall anomalies for both methods
(CCM5 and EM(w)1; CCM6 and EM(w)5). This suggests
a robust link between precipitation and those three atmo-
spheric circulation patterns. Given the geometry of the
domain, the atmospheric patterns are rather different from
those obtained from a classification of North Atlantic geo-
potential data [Michelangeli et al., 1995; Yiou and Nogaj,
2004]. In both methods, the blocking regimes (CCM6
and EM(w)5) consistently indicate drier conditions over
the South of France, which is consistent with more global

Figure 6. Same as Figure 4 but for EM.
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analyses [Yiou and Nogaj, 2004; Plaut and Simonnet, 2001;
Sanchez‐Gomez and Terray, 2005].
[42] As a more precise indicator of the “extreme content”

captured by themethods, the ratios of the number of days with
precipitation exceeding the 97.5th percentile, or exceeding
the 99th percentile, with respect to the total number of days
exceeding this percentile, are computed for each pattern and
station. These two ratios are denoted Rq97.5 and Rq99. For
each station and method, Table 4 shows Rq97.5 and Rq99 for
the pattern with the highest ratio. For each method, we see
some variability from one station to another. A better stability
is observed for CCM, in the sense that one single pattern
(CCM1) is enough to characterize local extreme precipitation
events while (most of) the other methods need more patterns.

More generally, except for the large cluster gathering about
3/5 of the data, CCM provides clusters that, by construction,
are strongly correlated to intense precipitation.
[43] Moreover, although EM(w) seems more unstable than

CCM (e.g., the highest ratios belong to more than one pattern,
and EM(w)6 Rq97.5 and Rq99 are clearly lower than for
CCM1), it also seems to behave better than the more classical
k‐means and EM applied to w CVs. Hence, it seems that
clustering w CVs improves the links between large‐ and
local‐scale variables in the defined clusters.
[44] Table 5 contains the sum of the ratios from the two

best patterns in terms of Rq97.5 and Rq99. CCM remains
generally better than k‐means, EM, and k‐means(w) to cap-
ture extremes precipitation for the seven stations, but EM(w)

Figure 7. Same as Figure 4 but for k‐means(w).
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becomes this time globally more efficient than any other
method. This approach even allows to gather 100% of the
extremes for two stations (Mont‐Aigoual and Orange) with
only two patterns (6 and 7). The k‐means(w) results are
globally not too far from CCM and EM(w) results,
strengthening the idea that clustering w CVs brings more
local‐scale information to the large‐scale patterns.

3.3. Sensitivity to the Size of the Domain: North
Atlantic WRs

[45] In order to test the sensitivity of the intercomparison
results to the size of the large‐scale domain, the five clustering
methods have also been performed using the more classical
North Atlantic (NA) region defined here as (77.5°W–42.5°E,
22.5°N–70°N), which is relatively similar to the NA region

used by Yiou and Nogaj [2004]. Indeed, many weather re-
gimes studies over western Europe are based on this type of
patterns [e.g., Yiou and Nogaj, 2004; Plaut and Simonnet,
2001; Sanchez‐Gomez and Terray, 2005]. For comparison
purpose, the NA regimes have been defined based on Z500

Figure 8. Same as Figure 4 but for EM(w).

Table 3. Correlation Between v1 and w1 CVs for Each Clustering
Method and Obtained Weather Regime

WR 1 WR 2 WR 3 WR 4 WR 5 WR 6 WR 7

CCM 0.95 1 1 1 0.7 1 1
k‐means 0.83 0.82 0.92 0.85 0.91 0.8 0.86
EM 0.81 0.84 1 0.91 0.78 0.85 0.87
k‐means(w) 0.69 0.7 1 0.96 1 0.82 0.77
EM(w) 0.8 0.66 0.97 0.96 0.68 1 0.75
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alone, which is the classical atmospheric variable usually
employed, and on SLP and Z500 together, as in the present
study. For both approaches, the k‐means and EM clustering
methods have been applied to generate four NA regimes (the
usual number) and sevenNA regimes for comparisonwith the
previous results of this study. Note that the Mediterranean
WRs are not directly compared to those obtained over the
North Atlantic as in work by Michelangeli et al. [1995]. The
five different clustering methods are applied to the North

Atlantic region as, for example, in work byMichelangeli et al.
[1995], before making some intercomparisons of the different
results.
[46] We computed the correlation between canonical

variates (i.e., corr(v1, w1)) conditionally on each patterns on
SLP and Z500 fields. The k‐means and EM NA results
in seven patterns are relatively equivalent to those on the
Mediterranean basin, with correlations ranging from 0.8 to
0.94 depending on the regime. For four clusters, the corre-
lations are slightly lower (from 0.75 to 0.88). However, the
occurrence and intensity anomalies, as well as the number of
days with precipitation exceeding the 90, 97.5, or 99%
quantiles, do not show any signal on the NA regimes. Those
do not seem to be related in any way to local‐scale pre-
cipitation observed in South of France at seven rain gauges
we considered.
[47] For the NA region, working on Z500 only instead of

SLP and Z500 together does not change much the results in
terms of relationship between the obtained patterns and the
observed precipitation. The atmospheric variability captured
from this big NA region does not allow to define distinct
local‐scale precipitation regimes in South of France.
[48] Moreover, the number of days with precipitation

exceeding the 97.5% or the 99% quantile is better when
working on theMediterranean basin. For example, the highest
Rq97.5 and Rq99 values per station, for NA patterns, belong
to [20%, 33%] and [20%, 36%], respectively (depending on
the station), for seven clusters from SLP and Z500) and to
[28%,59%] and [30%,63%], respectively, for four clusters.
Once more, for the NA patterns, obtained from Z500 rather
than SLP and Z500 does not bring different results. Those Rq
values (from Z500 only or SLP and Z500) are in the range of
(or sometimes lower than) those obtained from k‐means and
EM applied to PCs over the Mediterranean region, which
were already surpassed by the CCM patterns (see Table 4).
The results are the same in terms of the sum of the best two
Rqs (per station) as in Table 5, where CCM and CCA‐based
methods (EM(w) and k‐means(w)) are still clearly better.

Table 4. For Each Pattern and Station, Ratio of Number of Days
With Precipitation Exceeding the 97.5th Percentile, or Exceeding
the 99th Percentile, Calculated With Respect to the Total Number
of Days Exceeding This Percentilea

Stations

Pattern

1 2 3 4 5 6 7

CCM
Rq97.5 80.2(1) 84.9(1) 72.1(1) 42.7(1) 80.9(1) 77.5(1) 77(1)
Rq99 85.5(1) 92.8(1) 79.7(1) 56.5(1) 85.5(1) 81.2(1) 84.1(1)

k‐Means(PCs)
Rq97.5 39(5) 45.3(7) 72.7(5) 32.6(5) 49.7(5) 42.2(5) 40.2(5)
Rq99 40.6(5) 47.8(7) 81.2(5) 44.9(5) 55.1(5) 47.8(5) 39.1(5))

EM(PCs)
Rq97.5 36.6(7) 36.6(7) 47.7(7) 37.6(1) 37.6(7) 37(1) 41.4(7)
Rq99 39.1(7) 40.6(4) 49.3(7) 24.6(7) 30.4(7) 37.7(1) 39.1(7)

k‐Means(w)
Rq97.5 45.9(4) 73.3(3) 65.7(5) 40.4(6) 33.5(5) 57.2(4) 40.2(3)
Rq99 49.3(4) 85.5(3) 82.6(5) 36.2(5) 37.7(4) 69.6(4) 46.4(3)

EM(w)
Rq97.5 47.7(6) 67.4(6) 74.4(6) 33.1(3) 57.2(6) 54.3(7) 60.3(6)
Rq99 62.3(6) 87(6) 85.5(6) 44.9(6) 69.6(6) 59.4(6) 69.6(6)

aFor each method and station, only the results from the pattern with the
highest ratio are shown. The associated pattern numbering is indicated in
brackets. Bold values correspond to maximum value (i.e., “best” method)
per station. Rq97.5, ratio of number of days with precipitation exceeding
the 97.5th percentile; Rq99, ratio of number of days with precipitation
exceeding the 99th percentile.

Table 5. Same as Table 4 but for the Sum of the Ratios From the Best Two Patternsa

Stations

Pattern

1 2 3 4 5 6 7

CCM
Rq97.5 86(1,5) 89.5(1,4) 89(1,5) 62.4(1,7) 87.3(1,3) 84.4(1,7) 84.5(1,3)
Rq99 89.9(1,5) 97.1(1,6) 92.8(1,5) 71(1,5) 91.3(1,4) 87(1,3) 92.8(1,3)

k‐Means
Rq97.5 59.9(5.3) 76.7(7,5) 90.1(5,7) 52.2(5,2) 68.8(5,3) 62.4(5,3) 71.3(5,7)
Rq99 62.3(5,3) 78.3(7,5) 95.7(5,7) 60.9(5,2) 72.5(5,3) 68.1(5,3) 76.8(5,7)

EM
Rq97.5 66.3(7,1) 70.9(7,4) 83.1(7,1) 57.9(1,6) 66.5(7,1) 65.9(1,7) 63.2(7,1)
Rq99 65.2(7,1) 72.5(4,7) 87(7,1) 56.5(1,7) 56.5(7,1) 62.3(1,7) 59.4(7,4)

k‐Means(w)
Rq97.5 72.7(4,5) 88.4(3,5) 83.1(5,3) 65.7(6,5) 71.1(4,5) 82.1(4,5) 62.1(3,7)
Rq99 78.3(4,5) 97.1(3,5) 92.8(5,3) 50.7(5,3) 71(4,5) 92.8(4,5) 68.1(3,7)

EM(w)
Rq97.5 93.6(6,7) 94.2(6,7) 97.7(6,7) 65.2(3,6) 94.8(6,7) 97.1(6,7) 93.7(6,7)
Rq99 97.1(6,7) 98.6(6,7) 100(6,7) 75.4(6,3) 97.1(6,7) 100(6,7) 97.1(6,7)

aBest two patterns are indicated in brackets.
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[49] This brief analysis of sensitivity of the (intercom-
parison) results to the size of the large‐scale domain show
that working on this North Atlantic region does not bring
improvement compared to the Mediterranean basin in terms
of description of local‐scale extreme precipitation events for
our rain gauges.

3.4. Mean Duration and Persistence Analyses

[50] Mean duration of each cluster has been computed for
each method. Note that the five clustering methods compared
in this study do not employ any information on temporal
sequence of the data. In the present study related to precipi-
tation, this sequence may have importance (e.g., for impact
studies). It is found that the computed duration is very dif-
ferent from a method to another, and clearly smaller from the
CCA‐based methods than from the classical PCA‐based
ones. Indeed, by averaging the mean durations per method,
we obtain: 2.7 days for k‐means; 2.16 for EM; and 1.55 for
CCM, k‐means(w), and EM(w) over the Mediterranean
region. The latter three methods are in agreement with the
mean duration of the events exceeding the 97.5% or the 99%
percentile, which are 1.2 and 1.1 days, respectively, from all
stations averaged. For the North Atlantic region, in general,
the mean duration of each pattern varies between 3 and 6 days
(depending on the variable and the number of clusters), which
is much higher than the mean durations over the Mediterra-
nean basin.
[51] Moreover, a simple persistence analysis has been

performed, by redoing the same analyses as previously and
redoing Figures 1–10 (e.g., correlation(v1, w1), occurrence
anomalies, composite maps) only for days in cluster spells
persisting at least three days over the Mediterranean basin.
When computing the v andwCVs per cluster from these days,
the correlation between v1 and w1 improves for all method
and pattern (with respect to values given in Table 3), with
different intensities according to the WR and method (not
shown). For the occurrence anomaly maps, the (at least) 3 day
persistence analysis per method shows the exact same
structures as on unconditional Figures 4–8 but with slightly
higher values (not shown). However, the composite maps
(not shown) of clusters persisting more than three days do not
show any difference with the unconditional maps presented
for example on Figures 9 and 10.
[52] Those complementary remarks about persistence

strengthen the main results brought by the previous uncon-
ditional analyses. We note that persistence is certainly spe-
cific to the region and variables studied. The present results
concern cluster persistence of at least three days but can be
different for longer persistence (e.g., 4 or 5 days). However,
those further analyses are out of the range of the present study
and will be carried out in a future study.

4. Pattern Attribution Performances
and Precipitation Implications

[53] The next question that we are trying to answer here is
the following: If the large‐scale characteristics of a new day
are now available, can we use them to retrieve the pattern
where this new day should belong to? This is an important
question when working on a downscaling (weather typing)
context or more generally in a modeling context condi-
tionally on patterns, such as in projection of climate change.

However, in this study, this question is difficult to answer
because some of our patterns (CCM, k‐means(w), and EM(w))
are not only defined in terms of large‐scale variables but also
based on local‐scale observed precipitation. Yet, the latter is
generally not available: for example, in downscaling of cli-
mate scenarios for the end of the century, observations will
only be available at the end of the century by definition. Thus,
only the large‐scale information (that can be provided by
General circulation models (GCMs) for instance) can be used
to associate a new day to one given pattern.
[54] Moreover, knowing the error of pattern attribution for

each method, what is the cost in terms of rainfall occurrence
probability and rainfall intensity? Indeed, even though the
new day is associated to a “wrong” pattern, does this error
make a strong difference for local‐scale characteristics of
precipitation? How much?
[55] To answer those questions, the capability of retriev-

ing the right patterns from each clustering method is studied
here, and some associated precipitation cost functions are
developed. For each clustering method, the clusters are the
same as in sections 2 and 3; that is, they were defined for the
whole time period 1959–2004. Then, two time periods are
defined: 1959–1989 (learning period) from which different
attribution methods (i.e., supervised classification methods)
will be calibrated based on the daily sequence of patterns
and on the large‐scale information; and 1990–2004 (pro-
jection period) whose the large‐scale data are used in the
different attribution methods to associate every day to one
pattern. Hence, the new sequence of patterns, obtained from
each couple (clustering method, attribution method), can be
compared to the already known sequence for 1990–2004.
Note that although the patterns are initially defined for the
whole 1959–2004 period, neither local‐scale observations
nor 1990–2004 (large‐ or local‐scale) data are used in the
learning step; moreover, we emphasize that no local‐scale
observations are used in the projection step. In this evalu-
ation of the pattern attribution performances, nine different
attribution methods are tested: (1) the Euclidean distance on
raw atmospheric data (EA), where each day is allocated to
the pattern whose centroid is the closest with respect to the
Euclidean distance; (2) the Euclidean distance on the
w canonical variates defined from the whole (i.e., disregard-
ing the patterns) 1959–1989 time period (Ew1), which is
same as the EA method but with centroids defined on those
w‐CVs; (3) the Euclidean distance on the conditional
w canonical variates (Ew2), which is the same as Ew1 but
with the w CVs, used to compute the centroids, defined
separately from the different 1959–1989 patterns; (4) the
“Classification And Regression Trees” (CART) method
[Breiman et al., 1984] applied to the raw atmospheric data
(CART.A), a method hat iteratively splits the initial data set
(i.e., Z500 and SLP) into two data subsets (and so on) in
order to maximize the so‐called “impurity” criterion (also
called Gini index) at each step, and explain the clustering
provided as input (see Breiman et al. [1984] for more tech-
nical details); (5) the CART method applied to the w‐CVs
defined from the 1959–1989 time period (CART.w), which is
the same as CART.A (above) but where the variables to be
split to explain the clustering are now the w‐CVs; (6) the
CART method applied to both the atmospheric data and the
w‐CVs (CART.A.and.w), which is same as CART.A but
where the variables to be split are both the raw atmospheric
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data (Z500 and SLP) and the w‐CVs; (7) the 10‐nearest
neighbors method (knnA10), in which the 10 days whose
large‐scale atmospheric situations are the closest (in terms of
Euclidean distance) to the day to attribute are determined, and
then the day is attributed to the majority cluster within the
10 days [e.g., Duda et al., 2001; Toth, 1991]; (8) a mixture
model (MM) attribution method applied to the main principal
components (≈95% of variance) of the atmospheric data, in
which a Gaussian PDF is first determined for each 1959–1989
pattern, and then, for each day in 1990–2004, its PCs are
calculated (by projecting the large‐scale data onto the facto-
rial space) and applied to each PDF (the pattern selected for
this day is the one for which the PDF is the highest); and (9) a
mixture model attribution method applied to the w‐CVs
defined from the 1959–1989 time period (MMw), which is
the same as theMM approach but on thew‐CVs instead of the
PCs. Hence, for each pair of methods (clustering and attri-
bution), the percentage of bad classification (PBC) associated
to 1990–2004 is computed. The results are presented in
Table 6 where the best (i.e., minimum) PBC values are in
bold. Classical k‐means and EM approaches (i.e., applied to
PCs) provide the smallest PBCs (15.8 and 22.6%), while
CCM shows the highest (37% with MM). This was expected
since the classical k‐means and EM do not use at all the
local‐scale observed information, and thus, are purely
defined in terms of large‐scale features. On the opposite,
CCM, k‐means(w), and EM(w) were determined by incor-
porating some local characteristics. Hence, because the
attribution methods are not allowed to use any local vari-
ables (neither in learning nor in projection), it is more dif-
ficult to retrieve the correct sequence of daily patterns from
CVs‐based results than from PCs‐based ones. However, to
understand how much these errors in classification of new
days “cost” in terms of local modeling of precipitation,
three cost functions have been developed.
[56] The first one characterizes the error made if we want

to simulate precipitation at station s based on the mean char-
acteristics of the cluster associated to a given day d. Indeed, d
can be projected onto a “false” cluster with a different mean
precipitation. This cost function is denoted daily intensity
(DI) error and depends on s and d through

DIðs; dÞ ¼ jmeanðs;CprojðdÞÞ � Y ðs; dÞj
� jmeanðs;CrealðdÞÞ � Y ðs; dÞj; ð12Þ

where Cproj(d) is the cluster (correctly or incorrectly) associ-
ated to day d, Creal(d) is the cluster where d should be pro-
jected to, mean(s, C) is the mean precipitation of station s for
1959–1989 days in cluster C, and Y(s, d) is the precipitation
observed at station s and for day d. The DI cost function
allows us to quantify the difference between the error made in

simulating a mean precipitation when we know the correct
cluster (∣mean(s,Creal(d)) − Y(s, d)∣), and the error madewhen
simulating a mean precipitation when we project d to a given
(potentially wrong) cluster (∣mean(s, Cproj(d)) − Y(s, d)∣).
Hence, this cost function is useful in a modeling context to
evaluate the mean errors of simulations due to wrong asso-
ciation to the clusters. To summarize this information per
station, a mean DI (MDI) cost function is used,

MDIðsÞ ¼ 1

N

XN

d¼1

DIðs; dÞ; ð13Þ

where N is the number of winter days for 1990–2004. A
regional MDI (RMDI) is also calculated to obtain one value
for all the stations,

RMDI ¼ 1

S

XS

s¼1

MDIðsÞ; ð14Þ

where S is the number of stations (S = 7 in this study). The
MDI results are presented in the maps shown in Figure 11 for
each clustering method and for the best attribution methods
detailed in Table 6. By definition in equations (12)–(13) of
MDI, an upward triangle in Figure 11 indicates a bigger
difference between the observed precipitation and the mean
precipitation of the associated clusters than between the
observed precipitation and the mean precipitation of the
clusters we should have. Thus, an upward (downward) tri-
angle corresponds to an overestimation (underestimation) of
the mean precipitation to be simulated in a modeling context.
From Figure 11, we see that k‐means and EM MDIs are rel-
atively equivalent (both in magnitude and in the spatial
structure) and better (i.e., smaller in absolute values) than the
MDIs provided by the three CVs‐based methods. Visually,
the latter give the impression of an overestimation of the
mean precipitation, which is reflected by the RMDI values
(between 0.019 and 0.041 for the CVs‐based methods, and
around ‐0.01, slightly negative, for classical PCs‐based ones).
Those values also indicate that the attribution errors in CCM
patterns induce a smaller regional cost in daily mean pre-
cipitation (RMDI = 0.019) than the attribution errors to pat-
terns determined by k‐means(w) and EM(w) (RMDI = 0.041).
Note also that EM(w) and k‐means(w) present a very similar
structure,whileCCMshows some differences. In equation (12),
mean(s, Creal(d)) and mean(s, Cproj(d)) are here calculated
with respect to the 1959–1989 precipitation data. Note that
they also could have been calculatedwith respect to the 1990–
2004 data. The latter method would allow to take into account
the potential change of the mean precipitation of each station
per cluster. However, the results of this approach (not shown)
show similar structures and magnitudes of the DI and MDI

Table 6. Results of Bad Classification per Clustering and Attribution Methoda

EA Ew1 Ew2 CART.A CART.w CART.A.and.w knnA10 MM MMw

CCM 88.1 40.5 79.3 42.3 40.8 38.6 37.5 37.4 38.2
k‐means 78 76.5 66.9 18.9 69.3 19.4 16.2 15.8 64.7
EM 74.5 72.9 66.8 39.1 68.7 38.4 26.7 22.6 63.9
k‐means(w) 84.2 73.9 30.6 63.6 37.9 41.4 62.3 56.7 31.1
EM(w) 87.1 72.3 40.5 59.8 37.2 41.7 57.8 55.7 28

aResults are given as percent. Minimum values are in bold.
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values, meaning that the clusters are consistent between
learning and projection periods.
[57] Another cost function is developed to evaluate the

global error made in the rain occurrence probability due
to misclassification. It corresponds to the sum (over the
K clusters) of differences between the probability of rain
occurrence in “real” cluster k (i.e., group of days we should
retrieve), denoted Pr(occ∣Ck,real), and the probability in
“projected” cluster k (i.e., group of days we actually put
in cluster k by projection), denoted Pr(occ∣Ck,proj). Each
probability is weighted to take into account the number
of days in each cluster. This weighted global probability
(WGP) cost function depends on the stations s through

WGPðsÞ ¼ 1

N

XK

k¼1

ðCardðCk;projÞ � PrðoccjCk;projÞÞ
�

�ðCardðCk;realÞ � PrðoccjCk;realÞÞ
�
; ð15Þ

where Card(C) is the cardinality of cluster C, i.e., the
number of days within this cluster. The WGP results are
presented in Figure 12, where a downward triangle corre-
sponds to underestimation of the probability of rain occur-
rence. Overall, we see that all misclassification in patterns
from any clustering method provide underestimation of those
probabilities. However, if k‐means and EM applied either to
PCs or to CVs show equivalently small (i.e., good) values of
WGP, the misclassification of CCM patterns implies a rela-
tively high cost in occurrence probabilities, much bigger than
for the other clustering methods.
[58] However, WGP does not characterize the cost in inten-

sity of rainfall. This is performed by the conditional weighted
global log‐intensity (CWGLI) cost function defined as

CWGLIðsÞ ¼ 1

N

XK

k¼1

½ðCardðC*k;projÞ � logðmeanðs;C*k;projÞÞÞ

� ðCardðC*k;realÞ � logðmeanðs;C*k;realÞÞÞ�; ð16Þ

where mean(s, C*k) corresponds to the mean precipitation
value for station s calculated only from the days with positive
intensity of rain in cluster Ck, and Ck,real and Ck,proj are the
groups of days that we should retrieve and the groups of days
that we actually retrieve by projection, respectively, for
cluster k. The maps of the CWGLI results are presented for
each clustering method and their associated “optimal” attri-
bution method in Figure 13. Upward triangles correspond to
overestimation of log precipitation due tomisclassification. In
terms of “ranking” of the clustering methods based on the
CWGLI costs, we retrieve about the same results as forWGP:
k‐means and EM applied to PCs show very small CWGLI
values, bigger (but still good) values when applied to CVs,
whereas CCM shows higher (mostly positive) CWGLI costs.
Nevertheless, note that WGP and CWGLI values are globally
of opposite signs, meaning that the potential underestimation
of the probabilities of rain occurrence (i.e., downward WGP
triangles) is generally counterbalanced by an overestimation
of the rainfall intensities (i.e., upward CWGLI triangles).

5. Summary, Discussion, and Recommendations

[59] The results presented on MDI, WGP, and CWGLI
and the differences noted between clustering methods are

explicable by the content of information carried out by each
clustering result. Indeed, if the CVs‐based methods gener-
ally discriminate more the local‐scale precipitation char-
acteristics (this is due to the incorporation of precipitation
information through the CCA), the PCs‐based methods
provide patterns less “separated” in terms of local precipi-
tation (this is true, for example, for the extremes as shown in
Tables 4 and 5. In other words, the features of precipitation
are more similar from one PCs‐based pattern to another than
from one CVs‐based pattern to another. Consequently, for a
given misclassification (i.e., for the same PBC), the costs
induced in terms of rain probability or intensity will be higher
for “informative” patterns (i.e., from CVs‐based methods)
than for “similar” patterns (i.e., from PCs‐based methods).
Note that only seven rain gauges were used in this study.
Increasing this number could provide slightly different pat-
terns, leading also to different precipitation costs. However,
one can remark that, technically, it does not matter if there is
any correlation among the rain gauges. Indeed, strong cor-
relation between rain gauges would be captured in the
canonical variates resulting from the CCA. Hence, the CVs‐
based methods (EM(w), k‐means(w), and CCM) would need
fewer CVs to capture the main weather regimes associated to
local‐scale precipitation events. For the PCs‐based methods
(k‐means and EM), that would make no change at all since
those methods only work on large‐scale atmospheric data. A
similar remark holds for a greater number of stations. Indeed,
more stations would imply more “correlated” data. Hence, if
the “added” rain gauges are strongly correlated to the seven
existing stations, the number of CVs resulting from the CCA
would not increase too much. Hence, although the CCA
based on those seven gauges captures a subsample of the
“complete” spatial rainfall variability of the region, and a
subsample of the “complete” correlation between the regional
scale of interest and the large‐scale atmospheric data, this
“partial” variability/correlation would be present in an ideal
complete local‐scale data set. However, in practice, geo-
graphical locations of the stations may have importance. For
example, station 4 (Le Massegros) shows extreme values that
are not fully explained by any of the clusters. Although this
result can come from very local‐scale processes and effects
(i.e., implying a lack of correlation between the large‐scale
variables (SLP, Z500) and intense precipitation at this rain
gauge), this may also be due to a location too northern from
the rest of the stations.
[60] If NCEP/NCAR data have been employed in this

study, using ECMWF ERA‐40 reanalyses [Uppala et al.,
2005] could lead to slightly different results, with poten-
tially finer spatial structures due to the higher spatial reso-
lution. However, this higher resolution would imply more
statistical dimensions (i.e., variables). Hence, the attribution
methods could then have more difficulties to retrieve the
“correct” weather regimes. Moreover, ERA‐40 reanalyses
span a shorter time period, and end in 2002, which makes
them unsuitable for potential operational seasonal predic-
tion. Besides, NCEP/NCAR reanalyses have a spatial reso-
lution closer to that of many of the “traditional” General
Circulation Models (GCMs). Hence, the NCEP/NCAR res-
olution allows one to deal with technical conditions more
similar to those that we would get when working with
weather regimes in a future climate change context.
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[61] To summarize the information brought by the dif-
ferent cost functions, regional means are computed for WGP
and CWGLI (denoted by RWGP and RCWGLI, respec-
tively) in the same way as RMDI was defined in (14). Table 7
summarizes the values of the three regional costs for each
clustering method.
[62] When such methods are used for classifying large‐

scale atmospheric circulation and local precipitation, we
recommend that the following points are considered, to
weigh the pros and cons of each method.

5.1. CCM

[63] Although the patterns obtained from CCM are well
discriminated in terms of local precipitation, the percentage
of bad classification is generally relatively high whatever the
attribution method used. Moreover, those misclassifications
can have important error costs when simulating precipitation
(occurrence or intensity). Hence, CCM is not recommended
to be used in a projection andmodeling context. However, the
local‐scale information contained in the large‐scale patterns
makes CCM a very powerful tool in an analysis context to
better understand the large‐scale drivers of local‐scale phe-
nomena and particularly extremes.

5.2. Classical k‐Means and EM (i.e., Applied to PCs)

[64] The patterns provided by those two approaches
basically contain the same information. Although they pro-
vide consistent patterns in terms of the large‐scale variables
used for clustering, they usually do not discriminate very well
the local‐scale variable of interest (here precipitation) from
one pattern to another. Indeed, contrarily to the CVs‐based
methods (CCM, k‐means(w), and EM(w)), no local infor-
mation is used in the definition of the patterns. Consequently,
retrieving the pattern associated to the large‐scale character-
istics of a new given day is easier and, thus, their percentage
of bad classification is lower. Moreover, the relative simi-
larity from one pattern to another makes that a misclassifi-
cation does not cost too much when modeling or simulating
daily precipitation, with respect to the mean of the different
clusters. In other words, those patterns used in a modeling
context may have some ability in mean intensity but the
precipitation variability could strongly be underestimated.

5.3. CVs‐Based Methods (k‐Means(w) and EM(w))

[65] Those two methods showed well‐discriminated local
precipitation characteristics from one large‐scale pattern to
another, particularly for extreme precipitation with EM(w)
which allows to capture 100% of the precipitation events
higher than the 99th with only two patterns (over seven) for
two stations. Nevertheless, their PBC is better than the CCM
PBC. Although their RMDI is high, it is mainly driven by
one given station (Mont‐Aigoual), famous to be difficult to
model due to frequent intense events compared to other

stations. However, the misclassification of new days implies
a relatively small (i.e., good) cost in terms of rain occurrence
probability (WGP), comparable to those from classical k‐means
and EM. Although less pronounced, the same conclusion
holds for the cost in intensity.

6. Conclusions and Perspectives

[66] A comparison study between different clustering
methods has been performed. The methods were designed to
provide weather regimes based on large‐scale NCEP‐NCAR
reanalyses over theMediterranean basin for the winter season
(NDJFM). Although, the results can change according to the
months and season considered, the main point of this com-
parison was to see how much local‐scale precipitation
information was brought by the regimes from the different
clustering methods. Five clustering algorithms were used,
corresponding to three approaches: (1) the correlation clus-
tering mixture (CCM, iteratively defining a CCA model per
cluster); and the “classical” (2) k‐means and (3) EM cluster-
ing methods applied either to the first principal components
(about 95% of the variance) of the large‐scale atmospheric
variables (sea level pressure (SLP), and geopotential height a
500 mbar (Z500)), or to the w canonical variates obtained
from a CCA performed on atmospheric data versus observed
precipitation at seven rain gauges.
[67] In general, the k‐means and EM algorithms applied to

w CVs (k‐means(w) and EM(w)) allow a good compromise
between the two other approaches. Their percentage of bad
classification is halfway between those from CCM and PCs‐
based methods, and their precipitation cost due to bad clas-
sification is generally lower than CCM’s. Moreover, EM(w)
provides regimes which very well discriminate local precip-
itation, particularly for the extremes.
[68] Those approaches, the evaluation of the pattern

attribution performances, as well as the different precipitation
cost functions developed here, have been implemented into
an R package called “CCMtools” that should soon be freely
available on the CRAN Web site (http://cran.r‐project.org/)
or upon request to the authors.
[69] This study could be extended in different ways. One

of the most interesting studies to perform to pursue this
analysis would be to compare one or several statistical
downscaling methods (SDMs) based on the different WRs
discussed in this article. Indeed, if SDMs are often condi-
tioned by weather regimes, their influences are seldom
investigated. WRs with high local‐scale discrimination could
bring valuable information within a downscaling context,
but could also be implicitly attached to misclassification or
difficult attribution of a new day to the WRs.
[70] From a methodological point of view, CCM is a

k‐means like algorithm that is sensitive to the initialization
step. This could be improved by placing CCM in a simu-
lated annealing context to have CCM converging toward a
global optimum [Philipp et al., 2007].
[71] Moreover, precipitation was the only focus of this

analysis and other meteorological variables, such as tem-
perature or wind, would certainly bring other regimes with
different physical interpretation. Note that there is no a
priori technical issue in using the discussed clustering
methods for more than one variable (e.g., precipitation and
wind at the same time). Only the interpretation of the re-

Table 7. Summary of the Regional Mean Costs for the Different
Clustering Methods

Clustering Methods CCM k‐Means EM k‐Means(w) EM(w)

RMDI 0.02 −0.01 −0.01 0.04 0.04
RWGP −0.09 −0.02 −0.02 −0.02 −0.02
RCWGLI 0.06 0.01 0.01 0.03 0.03
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gimes can be more complicated but also depends on the
analysis of interest.
[72] Although the large‐scale atmospheric variables em-

ployed in this study (SLP and Z500) are quite usual to define
weather regimes, other atmospheric variables could be better
correlated to the local meteorological variable of interest
(e.g., relative humidity, wind speed, temperature).
[73] More generally, the comparison framework we

developed in this paper for southern France could be adapted
to different regions of the world where local‐scale effects may
be predominant and not well captured by large‐scale patterns.
[74] As final remark, we emphasize that there is no

“miracle” nor “best” clustering method. According to the
goal to reach and to the optimum weather regimes looked
for (e.g., in terms of local discrimination, costs of misclas-
sification), different solutions are possible. This study pro-
vides efficient tools to help the users to find this (or those)
optimum WR(s), adapted to particular cases and variables.

[75] Acknowledgments. This workwas supported byGIS‐REGYNA,
ANRMedUP, and CHAMPION projects. An R package called “CCMtools”
has been developed for CCM clustering and tests on attribution perfor-
mances. This package should soon be freely available on the CRANWeb site
(http://cran.r‐project.org/) or upon request to M. Vrac. The authors also
would like to thank the two anonymous reviewers for their careful reading
and constructive remarks throughout the review process.
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