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An extensive statistical ‘downscaling’ study is done to relate large-scale climate information from a gen-
eral circulation model (GCM) to local-scale river flows in SW France for 51 gauging stations ranging from
nival (snow-dominated) to pluvial (rainfall-dominated) river-systems. This study helps to select the
appropriate statistical method at a given spatial and temporal scale to downscale hydrology for future
climate change impact assessment of hydrological resources. The four proposed statistical downscaling
models use large-scale predictors (derived from climate model outputs or reanalysis data) that character-
ize precipitation and evaporation processes in the hydrological cycle to estimate summary flow statistics.
The four statistical models used are generalized linear (GLM) and additive (GAM) models, aggregated
boosted trees (ABT) and multi-layer perceptron neural networks (ANN). These four models were each
applied at two different spatial scales, namely at that of a single flow-gauging station (local downscaling)
and that of a group of flow-gauging stations having the same hydrological behaviour (regional downscal-
ing). For each statistical model and each spatial resolution, three temporal resolutions were considered,
namely the daily mean flows, the summary statistics of fortnightly flows and a daily ‘integrated
approach’. The results show that flow sensitivity to atmospheric factors is significantly different between
nival and pluvial hydrological systems which are mainly influenced, respectively, by shortwave solar
radiations and atmospheric temperature. The non-linear models (i.e. GAM, ABT and ANN) performed bet-
ter than the linear GLM when simulating fortnightly flow percentiles. The aggregated boosted trees
method showed higher and less variable R2 values to downscale the hydrological variability in both nival
and pluvial regimes. Based on GCM cnrm-cm3 and scenarios A2 and A1B, future relative changes of fort-
nightly median flows were projected based on the regional downscaling approach. The results suggest a
global decrease of flow in both pluvial and nival regimes, especially in spring, summer and autumn, what-
ever the considered scenario. The discussion considers the performance of each statistical method for
downscaling flow at different spatial and temporal scales as well as the relationship between atmo-
spheric processes and flow variability.

� 2010 Elsevier B.V. All rights reserved.
Introduction

Climate change is expected to adversely impact water re-
sources, water quality and the freshwater ecology and therefore
methods are required to quantify the likely impacts to develop
mitigation and adaptation strategies (Whitehead et al., 2009). Such
quantification requires an ability to forecast river flow based on the
projected changes in climate to assess changes in flow-pathways,
pollutant source area, dilution and residence times, all of which af-
fect the water quality and the aquatic ecosystem. Classically, future
climate change is modeled under several hypothetical scenarios
using general circulation models (GCM) which are mechanistic
models built to physically represent the main atmospheric pro-
ll rights reserved.
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cesses. However, GCM remain relatively coarse in resolution
(approximately 2.5� � 2.5�, i.e. about 250 km � 250 km) and are
unable to resolve sub-grid scale features such as topography,
clouds and land use. This represents a considerable problem for
the impact assessment of climate change on hydrological dynamics
in river-systems. Thus, considerable efforts in the climate commu-
nity have focused on the development of techniques, the so called
‘downscaling’ step, to bridge the gap between large- and local-
scale climate data. To date, impact studies of climate change on
hydrology involve a two-step approach: (i) GCM outputs are used
to generate local climate conditions such as precipitation and
temperature, which is known as ‘downscaling’, then; (ii) these
downscaled local climate data are used as input to a hydrological
model to project the hydrological changes according to future
climate. Fowler et al. (2007) made a comparative review of down-
scaling models applied to hydrological studies, which are usually
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separated into either dynamical or statistical approaches. Dynam-
ical downscaling is performed through regional climate models
(RCMs) which physically simulate the smaller-scale dynamical
processes that control climate at the regional level down to
5 km � 5 km. GCM outputs are used to define the boundary condi-
tions of RCMs. However, RCMs are computationally expensive in
the production of the regional simulations. As such, it is currently
possible to apply RCMs to limited periods and regions only.

This study relies on statistical downscaling models (SDMs).
Based on observed data, SDMs define relationships between the
large-scale variable fields, derived either from climate model out-
puts or observations, and local-scale surface conditions. The
large-scale variable fields from GCMs or reanalysis data (the predic-
tors) are chosen such that they are strongly related to the local-
scale conditions of interest (the predictands or response variable).
The relationships can then be used to estimate changes in river
flow, or other local hydrological measures such as precipitation or
air temperature, based on future projections from global or regional
climate models. SDMs are generally separated into three types of
approach which can be combined: regression models, weather typ-
ing schemes and weather generators (Vrac and Naveau, 2007a).
Multiple linear models, in the regression-based approach are the
most applied in downscaling, for example the well known SDSM
tool (Wilby et al., 2002). These assume a linear relationship be-
tween large-scale atmospheric predictors and the response vari-
able. However, several studies have shown that taking into
account non-linearity between predictors and the predictand in
statistical downscaling can improve the goodness-of-fit (Huth
et al., 2008) including polynomial regression (Hewitson, 1994),
recursive partitioning tree (Schnur and Lettenmaier, 1998), nearest
neighbour (Zorita and von Storch, 1999), artificial neural networks
(Harpham and Wilby, 2005; Khan et al., 2006) or generalized
additive models (Vrac et al., 2007a; Salameh et al., 2009).

The two-step modelling framework, linking GCM outputs to a
hydrological model, is usually constrained in space by the domain
of calibration of the hydrological model. Furthermore the data
requirement for setting the hydrological model parameters may
be large, both for conceptual and fully distributed hydrological
models (Arheimer and Wittgren, 1994; Eckhardt et al., 2005;
Thompson et al., 2004; Habets et al., 2008). One possibility to in-
crease the spatial extent of forecasting river flow at large spatial
scales in response to climate change is to develop SDMs able to
simulate instream flows directly from GCM atmospheric variables.
Seeking a direct association between river flows and GCM outputs
may be relevant to facilitate the generalization and extrapolation
of river flow simulations over large spatial scales. In the past, such
a direct link has been criticized by some authors because of an
over-simplification of the hydrological cycle through a lack of con-
sideration of water stores and transfers within the soils and
groundwater of a catchment (Xu, 1999), previous poor perfor-
mances of SDMs linking directly GCM to flow (Wilby et al., 1999)
or simply GCM outputs are deemed inappropriate as direct predic-
tors of river flows (Prudhomme et al., 2002). Furthermore, the di-
rect downscaling to streamflow from GCM atmospheric variables
generally do not take into account other important factors affecting
the streamflow variability such as the land use and soil cover,
assuming deterministically that those factors do change with time.

However during the last decade, the relationship between GCM
large-scale atmospheric variables and instream flows has been bet-
ter described. Kingston et al. (2006) made a useful synthesis of re-
cent integrated hydrological–climate research regarding the links
between large-scale atmospheric circulation patterns (e.g., charac-
terizing the North Atlantic Oscillation – NAO), regional climate and
streamflow variations in the northern North Atlantic region over
the last century and especially the last 50 years. Surprisingly, few
studies have investigated such a link between atmospheric circula-
tion patterns and flow in a purely predictive way, e.g., through
downscaling applications. Examples include Cannon and Whitfield
(2002) who applied an ensemble neural network downscaling ap-
proach to 21 watersheds in British Columbia; Ghosh and Mujum-
dar (2008) who simulated the streamflow of an Indian river for
the monsoon period using a relevance vector machine; Landman
et al. (2001) who downscaled the seasonal streamflow at the inlets
of twelve dams in South Africa from predicted monthly-mean
sea-surface temperature fields; Phillips et al. (2003) who used
atmospheric circulation patterns and regional climate predictors
to generate mean monthly flows in two British rivers; Déry and
Wood (2004) who have shown that the recent variability in
Hudson Bay river was significantly explained by the Arctic Oscilla-
tion over the last decades; Lawler et al. (2003) who investigated
the influence of changes in atmospheric circulation and regional
climate variability on river flows and suspended sediment fluxes
in southern Iceland; and Ye et al. (2004) who used combinations
of climate and atmospheric variables to explain from about
31–55% of the variance of the annual total discharges of three
Siberian rivers.

In this study, various direct downscaling strategies linking flows
to GCM outputs are investigated to estimate the flows measured at
51 hydrological gauging stations located in southwest France, rep-
resentative of a transition from nival (snow-dominated) to pluvial
(rainfall-dominated) hydrological conditions. Reanalysis data from
the National Centers for Environmental Prediction and the National
Center for Atmospheric Research. (NCEP/NCAR; Kalnay et al., 1996)
are used as large-scale atmospheric predictors to calibrate the
models and validate the approaches. The focus of this study will
address the three following questions:

(1) Which spatial or temporal scale resolution and statistical
methods could be the most relevant to downscale the stream-
flow variability from GCM outputs? As such, the statistical
downscaling framework is built upon an extensive compara-
tive approach which has three aspects (Fig. 1, Table 1). Four
linear or non-linear statistical methods are applied at two dif-
ferent spatial scales, either to individual stations or regionally
to a group of stations, according to three temporal resolutions
varying from daily to fortnightly time resolutions.

(2) Can the relationship between climate processes and the
hydrological variability be modeled by the downscaling
framework according to different hydrological systems? As
such, a wide set of NCEP/NCAR atmospheric variables are
tested as potential predictors for flows and an extensive sen-
sitivity analysis is performed to quantify the relationship
between flows and atmospheric predictors according a range
of hydrological regimes from nival to pluvial.

(3) As a synthesis of this work, is the proposed downscaling
framework relevant for future climate change impacts stud-
ies? As an illustration, future seasonal changes in flows are
projected and discussed according to nival and pluvial
regimes over the region, using one GCM (cnrm-cm3) and
two scenarios (A2, A1B).
Study area and data resource

Mean daily streamflow data for 51 stations located in the south-
west of France were obtained from the Hydro2 database main-
tained by the Ministère de l’Ecologie et du Développement
Durable (http://www.hydro.eaufrance.fr/; Table 2; Fig. 2). Three
criteria were employed to determine the stations to be selected:
(1) a continuous record spanning at least 15 years and starting
after 1945; (2) inclusion of a large range of hydrological conditions
over the region; (3) gauging stations close to water chemistry and

http://www.hydro.eaufrance.fr


Fig. 1. Statistical downscaling framework. Four different statistical downscaling methods were calibrated using 70% of complete dataset which linked synthesized
atmospheric predictors, derived from NCEP/NCAR reanalysis data, to observed flows summarized at different three time scales and point and regional spatial scales. Testing
was done using the remaining 30% of the dataset.

Table 1
Abbreviations.

Full name Abbreviation

Statistical downscaling model SDM
Generalized linear model GLM
Generalized additive model GAM
Aggregated boosted tree ABT
Artificial neural network ANN
General circulation model GCM
Classification and regression trees CART
Hierarchical ascending clustering HAC
Principal component analysis PCA
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biological sampling points and therefore of use to investigate the
interactions between hydrology, water chemistry and/or biological
communities in future studies. In general, the daily flow data from
the 51 stations were available from 1968 to 1999.
NCEP/NCAR reanalysis data were used to model the river flows
at the 51 gauging stations. NCEP/NCAR reanalysis data are
atmospheric model outputs derived from the assimilation of
surface observation stations, upper-air stations and satellite-
observing platforms with long records starting in 1948 and contin-
uing to present day. These data are typically viewed as ‘observed’
large-scale data on a regular grid with a spatial resolution of
approximately 2.5� � 2.5� (250 km � 250 km). To improve the
understanding between atmospheric conditions and flows, 27
atmospheric variables were tested here as potential explanatory
variables. These variables included long wave and short wave radi-
ation fluxes, cloud cover, land skin temperature, latent and sensible
heat fluxes at surface. The full list is given in Table 3. As this study
was built upon a climate change perspective, NCEP/NCAR variables
were carefully selected as readily-available GCM outputs (available
online at https://esg.llnl.gov:8443/index.jsp) so that these outputs
could be used in further studies to generate the flow response to
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Table 2
Description of the 51 hydrological gauging stations located SW France with their hydrological regime scales from nival (1) to pluvial (5).

Station ID Station name Catchment area (km v) Longitude (degrees E) Latitude (degrees N) Years Hydrological regimes

O0174010 La Neste d’Aure à Sarrancolin 606 0.38 42.955 1961–1999 1
O0200020 La Garonne 2230 0.707 43.098 1984–1999 1
O0234020 Le Ger à Aspet 95 0.795 43.021 1983–1999 2
O0384010 L’Arac à Soulan 169 1.232 42.899 1962–1999 2
O0444010 Le Lez aux Bordes-sur-Lez 212 1.029 42.903 1971–1999 1
O0502520 Le Salat à Saint-Lizier 1154 1.141 42.991 1974–1999 2
O0624010 Le Volp à Montberaud 91 1.142 43.145 1968–1999 3
O0744030 L’Arize au Mas-d’Azil 218 1.361 43.083 1974–1999 3
O0964030 La Louge au Fousseret 272 1.06 43.267 1970–1999 3
O1712510 L’Ariège à Auterive 3450 1.467 43.369 1966–1999 2
O2034010 L’Aussonnelle à Seilh 192 1.356 43.692 1968–1999 3
O2620010 La Garonne à Verdun-sur-Garonne 13730 1.242 43.855 1972–1999 2
O2883310 La Gimone à Garganvillar 827 1.111 43.998 1965–1999 4
O4142510 L’Agout à Anglès 364 2.596 43.595 1972–1999 4
O4544020 Le Sor à Cambounet-sur-le-Sor 372 2.115 43.577 1977–1999 4
O4704030 Le Dadou à Paulinet 72 2.441 43.822 1968–1999 4
O4984320 Le Tescou à Saint-Nauphary 287 1.432 43.966 1974–1999 3
O5534010 Le Lézert à Saint-Julien-du-Puy 222 2.196 44.162 1968–1999 4
O5685010 La Bonnette à Saint-Antonin-Noble-Val 179 1.748 44.172 1968–1999 4
O5754020 La Vère à Bruniquel 311 1.673 44.024 1971–1999 4
O5964020 Le Lemboulas à Lafrançaise 403 1.203 44.137 1968–1999 4
O6125010 La Petite Barguelonne à Montcuq 62 1.191 44.334 1971–1999 4
O6134010 La Barguelonne à Valence 477 0.998 44.17 1968–1999 5
O6164310 L’Auroue à Caudecoste 196 0.756 44.107 1968–1999 4
O6212530 Le Gers à Panassac 159 0.568 43.383 1965–1999 3
O6312520 Le Gers à Montestruc-sur-Gers 678 0.64 43.791 1965–1999 3
O6692910 La Ba à Nérac 1327 0.335 44.148 1965–1999 4
O6804630 L’Osse à Castex 10.2 0.324 43.399 1965–1999 3
O7971510 Le Lot à Faycelles 6840 2.016 44.557 1979–1999 5
O8133520 Le Célé à Orniac 1194 1.679 44.52 1971–1999 4
O8231510 Le Lot à Cahors 9170 1.446 44.449 1960–1999 5
O8584010 La Lède à Casseneuil 411 0.634 44.446 1970–1999 4
O9000010 La Garonne à Tonneins 51500 0.222 44.412 1989–1999 5
O9034010 Le Tolzac à Varès 255 0.353 44.433 1970–1999 4
O9134010 L’Avance à Montpouillan 405 0.137 44.464 1968–1999 5
P2054010 La Bave à Frayssinhes 183 1.948 44.858 1961–1999 5
P6342510 L’Auvézère à Cherveix-Cubas 586 1.127 45.298 1966–1999 5
P7261510 L’Isle à Abzac 3752 �0.126 45.022 1972–1999 5
P8462510 La Dronne à Coutras 2816 �0.132 45.042 1967–1999 5
Q0100010 L’Adour 272 0.164 43.037 1940–1999 1
Q0280030 L’Adour à Estirac 906 0.029 43.498 1968–1999 2
Q0522520 L’Arros à Gourgue 173 0.259 43.132 1968–1999 3
Q2062510 Le Midour à Laujuzan 256 �0.117 43.821 1966–1999 4
Q2192510 Le Midou à Mont-de-Marsan 800 �0.502 43.892 1967–1998 3
Q4124010 Le Gave d’Héas à Gèdre 84 0.022 42.787 1948–1995 1
Q4801010 Le Gave de Pau à Saint-Pé-de-Bigorre 1120 �0.143 43.103 1955–1999 1
Q5501010 Le Gave de Pau à Bérenx 2575 �0.853 43.509 1940–1999 2
Q6332510 Le Gave d’Aspe à Bedous 425 �0.604 42.981 1948–1999 2
Q7002910 Le Gave d’Oloron à Oloron-Sainte-Marie 1085 �0.608 43.199 1940–1999 2
Q8032510 La Bidouze à A-Camou-Suhast 246 �1.028 43.334 1969–1999 4
S2242510 L’Eyre à Salles 1650 �0.872 44.548 1967–1999 5
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projected climate change. Each NCEP/NCAR variable was interpo-
lated to each of the 51 hydrological stations locations using bilinear
interpolation. For a given station, the interpolated data result from
the weighted average of the data of the nearest points located on
the regular grid. Then each interpolated NCEP/NCAR variable was
normalized so that its mean was zero and its variance was 1.
Method

The statistical downscaling framework may be summarized in
four steps (Fig. 1, Table 1). At step 1, information from the 27
NCEP/NCAR variables was first synthesised into five process-based
predictors to be more readily interpreted, namely precipitation,
temperature, pressure, radiation and heat flux (see Section ‘‘Deriv-
ing process-based NCEP/NCAR predictors”; Fig. 3). At step 2, these
process-based predictors were used in the statistical downscaling
framework (SDM; see Section ‘‘Statistical downscaling frame-
work”, Fig. 1) to simulate river flow according to two spatial reso-
lutions, namely at a single flow-gauging station or a group of
flow-gauging stations having the same hydrological behaviour
(Fig. 1a). For each spatial resolution, four statistical models
(Fig. 1b) including generalized linear models (GLM), generalized
additive models (GAM), aggregated boosted trees (ABT) and artifi-
cial neural networks (ANN) were each applied to three temporal
resolutions, namely daily mean flow, fortnightly-derived flows
statistics (percentiles 10%, 50% and 90%) and a daily integrated
approach (Fig. 1c). This daily integrated approach separates the
daily flow downscaling process into the downscaling of the daily
seasonal cycle, which is defined as the mean flow for each day of
the year over the calibration period, and the downscaling of the
corresponding daily anomalies which are the values resulting from
the subtraction of the daily seasonal cycle from the daily flow data.
Performances of the different SDMs are compared between ob-
served and downscaled flow statistics calculated at the fortnightly
time scale for each station (Fig. 1d). At step 3, a sensitivity analysis



Fig. 2. The locations of the 51 hydrological gauging stations in the Adour-Garonne
river-system (SW France). The grey-scale colours represent the hydrological
transition from nival (cluster 1) to pluvial (cluster 5) hydrological regimes.
Hydrological clusters were identified using HAC.
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was performed based on the regional downscaling approach to
quantify and describe the relationship between river flow and
the five process-based atmospheric variables, according to the
hydrological regions and the five statistical methods used (see Sec-
tion ‘‘Sensitivity of downscaled flows to atmospheric predictors”).
At step 4, future relative changes of seasonal flow were projected
to assess the potential impact of climate change on nival and plu-
vial systems according to different time periods and future scenar-
ios (see Section ‘‘Future projections”).

Deriving process-based NCEP/NCAR predictors

The approach was based on a regional, process-based represen-
tation of atmospheric variables, which aimed at synthesizing the
initial 27 NCEP/NCAR atmospheric variables into a limited number
of moderately correlated, physically meaningful, predictors for the
downscaling of flows (Fig. 3). With such a representation, correla-
tions between predictors were reduced, so that their relationship
with the flow variability could be quantified with more robustness
than if using the 27 highly correlated NCEP/NCAR predictors di-
rectly. In practice, co-linearity would not impact the performances
Table 3
Description of the NCEP/NCAR reanalysis predictors used into the downscaling framewo
circulation models outputs.

NCEP names NCEP short
names

Pres
(hPa

Mean daily air temperature air 500
Mean daily convective precipitation rate at surface cprat
Mean daily clear sky downward longwave flux at surface csdlf
Mean daily clear sky downward solar flux at surface csdsf
Mean daily clear sky upward solar flux at surface csusf
Mean daily downward longwave radiation flux at surface dlwrf
Mean daily downward solar radiation flux at surface dswrf
Mean daily geopotential height hgt 500
Mean daily upward longwave radiation flux at surface ulwrf
Mean daily precipitation rate at surface prate
Mean daily surface pressure pres
Mean daily relative humidity rhum 500
Mean daily upward solar radiation flux at surface uswrf
Mean daily specific humidity shum 500
Mean daily SST/land skin Temperature skt
Mean daily sea level pressure slp
Mean daily total cloud cover tcdc
Mean daily latent heat net flux at surface lhtfl
Mean daily sensible heat net flux at surface shtfl
of the downscaling process; however, the individual contribution
of predictors to the flow variance explained, as well as the coeffi-
cients estimates in downscaling models, could change erratically.
Furthermore, limiting the number of atmospheric predictors re-
duces the computation time for downscaling models. The method
to derive the process-based factors is based on two-steps:

(1) A Hierarchical ascending cluster analysis (HAC) with Ward
criterion was applied to the Euclidean distance matrix of
the 27 normalized mean monthly NCEP/NCAR atmospheric
variables (Ward, 1963). HAC has been applied in several cli-
mate studies, such as Vrac et al. (2007b) who categorized the
regional climate conditions in the state of Illinois, USA, in
terms of circulation and precipitation atmospheric patterns.
By applying HAC in our study, the atmospheric variables
which have the most similar ‘‘behaviours” have been
grouped together within five homogeneous clusters related
to precipitation, temperature, pressure, shortwave radiation
and heat flux processes (Fig. 3a). The relevance of selecting
five clusters was assessed using the silhouette information
(SI) calculated for each variable, ranging from 0 to 1 for
badly to perfectly clustered variables (Rousseeuw, 1987).
In this study, the 27 variables were correctly placed within
the five clusters (SI > 0.5). Furthermore, the five clusters rep-
resented physically meaningful information on well identi-
fied atmospheric processes.

(2) A principal component analysis (PCA) was applied to each of
the five groups of variables to derive a physically meaningful
and synthetic description of the given process. The first PC of
each group, containing more than 80% of the total variance,
was retained as predictor into the downscaling (Fig. 3b). The
pairwise Pearson correlation between the first PC of each
group was ensured not to exceed 0.7.

Statistical downscaling framework

Prior to the downscaling process, flow data were first standard-
ized per station. For a given station, the annual mean flow was sub-
tracted from the time series of daily flows and the result divided by
the standard deviation of the daily flow time series. This was done
to make the dimension of flow values comparable between
stations. The standardized data were then transformed using
rk for river flow simulation, with their acronyms and correspondence with global

sure levels
)

Units Corresponding
monthly GCM output

Corresponding
daily GCM output

, 850,1000 K ta ta
kg m�2 s�1 prc
W m�2 rldscs
W m�2 rsdscs
W m�2 rsuscs
W m�2 rlds rlds
W m�2 rsds rsds

, 850, 1000 m zg zg
W m�2 rlus rlus
kg m�2 s�1 pr pr
Pa ps ps

, 850, 1000 % hur
W m�2 rsus rsus

, 850, 1000 kg kg�1 hus hus
K ts
Pa psl psl
% clt
W m�2 hfls hfls
W m�2 hfss hfls



Fig. 3. Atmospheric predictors, namely heat flux, precipitation, temperature, shortwave solar radiation and pressure fields were derived from the 27 normalized NCEP/NCAR
atmospheric variables. The atmospheric variables were first clustered (a) using hierarchical ascending analysis with Ward criterion (HAC), then process-based predictors were
synthesized into the first component of a principal component analysis (PCA) applied to each cluster (b). The 27 variables are explained in Table 3.
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box–cox power transformations to make the shape of the distribu-
tion as Gaussian as possible, so that the GLM and GAM assumption
of normality was valid (Box and Cox, 1964). The whole analysis
was made with the R statistical software and supporting routines
that have been compiled into the DS package for R, available on
request.

Point (P) and regional (R) downscaling
Point downscaling refers to the calibration of a statistical model

to each of the 51 gauging stations. Regional downscaling, in this
study, refers to the calibration of a statistical model to a group of
gauging stations representative of a hydrological regime. These re-
gimes were previously identified via HAC method with Ward crite-
rion to group the 51 gauging stations into five homogeneous and
well identified hydrological regimes ranging from nival to pluvial
(Fig. 2). The five selected clusters were assumed to be the optimal
number of clusters for the present analysis in comparison to a lar-
ger or smaller number of clusters. Thus all the stations from the
same hydrological regime have the same calibrated model. HAC
was applied to the Euclidean distance matrix of stations based on
their standardized monthly flow percentiles (10%, 50% and 90%).
Note that HAC was performed based on monthly flow percentiles
only, and not other basin characteristics.

Daily (D) vs. fortnightly (F) direct downscaling vs. daily integrated
downscaling (I)

The comparative downscaling framework includes three
different time scale strategies (Fig. 1c). In this study, SDM aims
at relating directly the daily mean (D) and fortnightly mean (F)
atmospheric predictors, respectively to the daily mean flow and
fortnightly flow statistics which were the fortnightly percentiles
10%, 50%, and 90%. Such indices have been applied in downscaling
context to improve percentiles estimates, especially extremes
(Dibike and Coulibaly, 2006). The fortnightly scale was preferred
to monthly scale to increase the number of sampling units and im-
prove the statistical inference.

The daily ‘integrated’ SDM (I) was based on two separate down-
scaling steps from the initial daily time series of flow. Firstly,
the downscaling of the daily seasonal cycle was done; secondly,
the downscaling of the corresponding daily anomalies. Finally,
the downscaled daily seasonal cycle and anomalies are summed
afterwards to complete the daily integrated approach. As such,
downscaling the seasonal cycle aims at modelling the flow season-
ality while downscaling the anomalies aims at modelling the var-
iation around the daily seasonal cycle. A review of the literature
suggests that such an approach has not been tried previously.

Statistical models
For each of the six SDM spatial/temporal combinations examin-

ing point and regional downscaling at each of the daily, fortnightly
and ‘integrated’ time scales, GLM, GAM, ABT and ANN statistical
methods were also compared for each of the six combinations
(Fig. 1b).

Generalized linear and generalized additive models. Generalized Lin-
ear Models (GLM) are a flexible generalization of ordinary least
squares regression, unifying various other statistical models,
including linear, logistic and Poisson regression under one frame-
work (McCullagh, 1984). In GLM, each outcome of the response
variable Y (i.e., flow) is assumed to be generated from a particular
distribution function in the exponential family that includes the
normal, binomial and Poisson distributions. Flow data were as-
sumed to be normally distributed after box-cox transformation.
The mean of the distribution, l, depends on the predictor variables
X, namely the NCEP/NCAR predictors. The model was defined as:

gðEðYjXÞÞ ¼ bX þ a ð1Þ

where E(Y|X) is the expected value of Y conditionally on X; b and a
corresponds respectively to a vector of unknown parameters to be
estimated and the intercept; g is the function relating the predictors
to the flow variable. The g function is called the ‘‘link” function and
can take many shapes (determined by the user) in order to make
applicable the right parts of Eq. (1). Indeed, according to the distri-
bution family of Y, the link function g has to be changed. In the pres-
ent study, the flow variability to downscale are assumed to be
Gaussian distributed and then E(Y|X) is directly related the right
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parts of Eq. (1) (see Hastie and Tibshirani, 1990 for technical and
theoretical details). Hence, g is taken as the identity function.

Generalized additive models (GAM) have been developed for
extending properties of GLM to non-linear relationships between
X and Y through additive properties (Hastie and Tibshirani,
1990). GAM fits the conditional expectation of Y given X, as the
sum of m spline functions fi of some or all of the covariates (Wood,
2008), where m is the dimension of X:

gðEðYjXÞÞ ¼
Xm

i¼1

fiðxiÞ þ h0 ð2Þ

As for GLM, GAM specifies a distribution for the response vari-
able. The functions fi can be parametric or non-parametric, thus
providing the potential for non-linear fits to the data which GLM
does not allow. In this study, the spline functions, fi, are defined
as natural cubic splines, namely splines constructed of piecewise
third-order polynomials with continuity conditions expressed un-
til second derivatives (Hastie and Tibshirani, 1990). h0 is a constant
to be estimated and g was defined as the identity function.

Feedforward artificial neural network. A multi-layer perceptron
feedforward artificial neural network (ANN) was used in this study.
This type of neural network is extremely flexible and has been ap-
plied to a wide variety of hydrological and climate situations (Reed
and Marks, 1998). In this study the artificial neural network was
trained using a back-propagation algorithm (Rumelhart et al.,
1986). The architecture of the neural network used was three lay-
ers of neurons: the input layer, the hidden layer and the output
layer. Every neuron of a layer was connected with every neuron
of the previous layer by weight links that were modified during
successive iterations. The value of the output from each neuron
was calculated using the tanh sigmoid transfer function [f(x) = 1/
(1 + e�x)]. The back-propagation algorithm adjusted the connection
weights according to the back propagated error computed between
the observed and the estimated results. This is a supervised train-
ing procedure that attempts to minimize the error between the de-
sired and the predicted output (Lek and Guégan, 2000). The output
Y from the neural network was given by:

Y ¼
X

j

tan h
X

i

xiw1
i;j þ b1

j

 !
w2

j þ b2 ð3Þ

where xi represents the ith input predictors, w1
i;j and w2

i are the hid-
den input and output layer weights, and b1

i;j and b2 the hidden input
and output layer biases. Here, j = 4 internal nodes were chosen for
the single-hidden layer by comparing the downscaling perfor-
mances with a different number of nodes whose range was defined
using the empirical formula (Huang and Foo, 2002):ffiffiffiffiffi

2i
p
þ o < j < 2iþ 1 ð4Þ

Where i is the number of input nodes corresponding to the
number of atmospheric predictors (i.e. in our case the five pro-
cess-based predictors), o is the number of output nodes (i.e. in this
study o = 1).

Aggregated boosted regression trees (ABT). There was no evidence in
the readily-accessible literature that boosted trees have been used
in downscaling studies. Friedman et al. (2000) and Hastie et al.
(2001) introduced the technique for use in applied statistics, espe-
cially in ecological applications. Boosted trees are based on a com-
pilation of classification and regression tree (CART) models. CART
models explain variation of a single response variable by repeat-
edly splitting the data into more homogeneous groups, using com-
binations of explanatory variables that may be categorical and/or
numeric. Each group is characterized by a typical value of the re-
sponse variable, the number of observations in the group and the
values of the explanatory variables that define it (De’ath and Fab-
ricius, 2000).

The aim of boosted trees is to improve the performance of a sin-
gle CART model by fitting m models, in our case 1000 models,
where each successive CART is built for the prediction residuals
of the preceding tree (Elith et al., 2008). Considering a loss function
that represents the loss in predictive performance (e.g., deviance
explained) between two models, boosting is a numerical optimiza-
tion technique that minimizes the value of the loss function by
adding, at each new step, a new CART that best reduces the loss
function (Elith et al., 2008). To limit the over-fitting of the boosted
trees caused by the construction of too many CART models, each
new CART is grown on a randomized subset of the dataset. Then,
the optimal number of trees is automatically selected, after the
1000 generated CART in our study, so that that the loss in predic-
tive performance calculated on the remaining subset of the dataset
was minimized (De’ath, 2007).

Aggregated boosted trees (ABT) are themselves an extension of
boosted trees. Aggregated boosted trees comprise a collection of
boosted trees generated on a cross-validation subset, which reduce
the prediction error relative to a single boosted tree (De’ath, 2007).

Validation and evaluation of model performances
The same validation procedure was applied to all downscaling

schemes. Observations were chosen from the whole sample to
form the training dataset (the first 70% of each time series), and
the remaining observations (i.e. corresponding to the last 30% of
each time series) were retained as the validation dataset
(Fig. 1d). Hence, validation and training datasets are temporally
independent. For the comparison between the different spatial
and time scales downscaling models, performance was evaluated
using the coefficient of determination, R2, calculated by station
for each fortnightly statistics (percentiles 10%, 50% and 90% of
flow) between observations (O) and simulations (S) from year i to
n, through:

R2 ¼

Pn
i¼1
ðOi � OÞðSi � SÞ

Pn
i¼1
ðOi � OÞ2

� �0:5 Pn
i¼1
ðSi � SÞ2

� �0:5

8>>><
>>>:

9>>>=
>>>;

ð5Þ

R2 values range from 0 (poor model) to 1 (perfect model). Statis-
tical downscaling models with R2 values above 0.5 will be inter-
preted here as good models, showing that 50% of the flow
variability is explained by the atmospheric predictors (Fig. 1d).

Sensitivity of downscaled flows to atmospheric predictors

Based on the regional fortnightly downscaling approach, a sen-
sitivity analysis was performed to quantify the contribution from
each of the five process-based predictors to the explained variance
of the river flow, according to the different hydrological regions
and the four statistical methods, namely GLM, GAM, ANN and
ABT. Since the core from the four statistical methods is based upon
different algorithm, the sensitivity approach developed here to
quantify the influence of predictors to the flow variability was spe-
cific to each statistical method. However, to make comparable the
results between the four statistical methods, the percentage contri-
bution of each predictor to the flow variance explained (i.e. R2) is
scaled so that the sum adds to 100, with higher numbers indicating
stronger contribution to the response (Elith et al., 2008).

Sensitivity measure
For GAM and GLM, the sensitivity of flow variability to the

atmospheric predictors was estimated via the Fisher–Snedecor
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statistic, F, calculated for each of the predictors. Typically in GLM
and GAM framework, the F statistic is the ratio of the explained
variability by a given predictor (as calculated by the R2 coefficient
of determination) and the unexplained variability (as calculated by
1 � R2), divided by the corresponding degree of freedom (Lomax,
2007). Thus, the larger the F statistic, the more important is the
predictor to flow variance explained.

For ANN, the influence predictor to the flow variability was
evaluated via the method of partial derivates (Dimopoulos et al.,
1995; Gevrey et al., 2003). With the method of partial derivates,
the sum of square derivatives value was obtained per input vari-
able and allowed a classification of the input variables according
to their increasing contribution to the output variable (i.e. river
flows) in the model. The input variable with the highest sum of
square derivatives value was the variable most influencing the out-
put variable.

For ABT, the flow sensitivity to each atmospheric predictor was
assessed using the method described by Friedman (2001). The con-
tribution of predictors is based on the number of times a predictor
is selected for splitting during the boosting process, weighted by
the squared improvement (i.e. the loss in predictive performance)
to the model as a result of each of those splits, and averaged over
all models.

Multivariate analysis of variance
Each downscaling model was performed 500 times using flow

datasets of size 500 (m = 500), randomly drawn from the training
dataset and representing approximately 25% of it. A Multivariate
Analysis of Variance (Manova) was applied to test if the relative
contribution of the five atmospheric predictors (a = 5) was signifi-
cantly different between each statistical model (s = 4) and between
each hydrological regime (h = 5). Manova is a direct extension of
anova where the two tested variables of interest are not tested
on a single continuous variable but on the distance matrix. Here,
the Euclidean distance matrix was calculated from the i � a matrix
of predictors contribution, where i = m � s � h.

Future projections

Based on the regional fortnightly downscaling approach, future
projections of median flow conditions were performed to illustrate
the ability of using the downscaling framework for future climate
change impact studies. The future projections were based on the
GCM cnrm-cm3 from Meteo-France according to two scenarios
from the IPCC (Pachauri and Reisinger, 2007), namely scenarios
A2 and B1. Three time periods, namely 2025–2050, 2050–2075
and 2075–2100 were investigated and the relative changes of flow
(RC) were calculated seasonally for each station to highlight the
contrasted changes between nival and pluvial regimes according
to the two scenarios. RC was calculated as difference between fu-
ture projected and observed (1970–2000) flow condition, divided
by the observed condition. For example, a relative change
of +0.20 indicates a future flow increase of 20%. The future flow
projections were made in three steps:

The GCM atmospheric variables for the two future scenarios
were standardized according to their control period, i.e. under
the scenario ‘20c3m’ which represents a simulation of the GCM
over 1970–2000 based on historical trends. This was done to re-
move the potential bias in the mean and the standard deviation
of GCM atmospheric variables over the period 1970–2000.

As many hydrological change impact studies (e.g., Hay et al.,
2000), the delta method was applied to each of the 21 atmospheric
variables by adding the change in climate to an observational data-
base to represent the future climate. More specifically for a given
station and a given month, the delta method was calculated as
the mean difference between the observations, i.e. the averaged
NCEP/NCAR conditions over 1970–2000, and the averaged GCM
projections over a given future time period. Then the observations
and the estimated mean difference were summed afterwards to
recombine a future fortnightly times series of atmospheric
variables.

The future fortnightly times series of the 21 atmospheric vari-
ables were then projected onto the first principal component axis
from their respective group of atmospheric variables (see Section
‘‘Deriving process-based NCEP/NCAR predictors”) to derive the four
atmospheric predictors for the downscaling.
Results

The Hierarchical ascending cluster analysis applied to our 51
stations produced five hydrological regimes, ranging from nival
to pluvial systems (Fig. 2). The nival regime characterizes stations
mostly located in the headwaters of the Pyrenees (six stations)
with the annual peak of flows generally occurring during the spring
snowmelt. Conversely, the pluvial regime characterizes lowland
stations (10 stations), influenced by heavy winter rainfall in the
Massif Central leading to maximum annual flows in winter. Tran-
sitional nival to pluvial regimes are observed for intermediate sta-
tions collecting water both from Pyrenees and Central Massif
(Fig. 2). The seasonal Pearson correlations between the observed
flows and the corresponding process-based predictors, namely pre-
cipitation, temperature, solar radiations, heat fluxes and pressure
PC (Fig. 3), show some seasonal correlations according to nival or
pluvial regimes (Fig. 4). Temperature and shortwave solar radia-
tions correlated with observed flows show the largest seasonal var-
iability in the correlations (Fig. 4a and b). While the correlation
between flow and temperature is globally negative in summer
and autumn as well as weak in winter for both nival and pluvial re-
gimes, the temperature in spring correlates flow negatively in plu-
vial systems and positively in nival ones (Fig. 4a). The seasonal
correlation of flow with the shortwave solar radiations exhibits
the same trends than those observed with the temperature, ex-
cepted in summer where the correlation between flow and the
shortwave radiations remains positive for both pluvial and nival
regimes (Fig. 4b). The correlation between precipitation and flows
is globally positive throughout the year, approximately R = 0.4
(Fig. 4c). Heat fluxes and pressure predictors do not show strong
seasonal correlations with flows, although flow correlation to the
pressure PC averaged �0.2, nor major differences between nival
and pluvial regimes (Fig. 4d and e).

The mean percentage contribution and standard deviation from
the five process-based predictors to the flow variance explained
was estimated for each statistical model (i.e. GLM, GAM, ABT,
ANN) and per hydrological regime using the daily regional down-
scaling from 500 samples (Fig. 5). The Manova results show that
the contribution of the atmospheric predictors was significantly
different between the four statistical methods (Manova,
p < 0.001) and between the five hydrological regimes (Manova,
p < 0.001). Nival regimes are mainly driven by solar radiation
fluxes whereas temperature is the key-process involved in pluvial
regimes (Fig. 5a). Aggregated boosted trees seem to be more stable
than other methods since the percentage of contribution calculated
for each predictor show less variability then the one estimated
from the GLM, GAM and ANN, as shown by the smaller amplitude
in the boxplot (Fig. 5b). GLM, GAM and ANN emphasise the impor-
tance of temperature and solar radiation principal components to
explain the flow variance. However, temperature and solar radia-
tion remain the two most important factors for both statistical
models (Fig. 5b).

Model performances (i.e. R2 calculated between fortnightly ob-
served and simulated flow statistics) were compared according to



Fig. 4. Seasonal Pearson R correlation coefficients between flow and the five derived atmospheric predictors, as described in Fig. 3, according to nival (dark grey) and and
pluvial (white) systems: (a) temperature, (b) shortwave solar radiation, (c) precipitation, (d) pressure and (e) heat fluxes.

Fig. 5. Results of the sensitivity analysis showing the percentage contribution of
the five atmospheric predictors to the explained flow variability, according to
hydrological regimes (a) from nival (black) to pluvial (white); statistical downscal-
ing models (b) ABT = aggregated boosted trees, GAM = generalized additive model,
GLM = generalized linear model, ANN = artificial neural network.
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each spatial/time scale combination, as well as according to the
four statistical models and the five hydrological regimes. The re-
sults are presented in Fig. 6. Mean R2 performances for aggregated
boosted trees (ABT) are significantly better than those of the GLM
(paired t-test, p < 0.001), GAM (paired t-test, p < 0.001) and ANN
(paired t-test, p < 0.001), while GLM shows significantly lower
performances (Fig. 6a; R2

ABT ¼ 0:49, R2
GAM ¼ 0:44, R2

ANN ¼ 0:44, R2
GLM

¼ 0:40. When averaging results from all methods, a slight decrease
in high flow percentiles estimates is observed (R2

p10 ¼ 0:48,
R2

p50 ¼ 0:47, R2
p90 ¼ 0:41). Overall, fortnightly downscaling (F)

slightly outperforms daily downscaling (D) and daily downscaling
with integrated seasonal cycle and anomalies (I) (R2

F ¼ 0:47,
R2

D ¼ 0:43, R2
I ¼ 0:43). Additional results from the daily integrated

downscaling (not presented here) show its good performance in
downscaling the seasonal cycle, but its lack of efficiency to simu-
late the daily anomalies. Point downscaling performs significantly
better than the regional one as R2

Point ¼ 0:51 and R2
Regional ¼ 0:46

(paired t-test, p < 0.001) and it is significantly better for modelling
high fortnightly flow percentiles (paired t-test, p < 0.001). The
mean performance of downscaling models is lower in nival
(R2

cluster 1 ¼ 0:41) than in pluvial ðR2
cluster 5 ¼ 0:45) regimes, espe-

cially for high flow percentiles estimates (Fig. 6c; unpaired t-test,
p < 001). Globally for the three percentiles, fortnightly flows is bet-
ter simulated by the downscaling models in summer (R2

JJA ¼ 0:28)
than in winter (R2

DJF ¼ 0:11), spring (R2
MAM ¼ 0:16) and autumn

(R2
SON ¼ 0:19) (Fig. 6d).
Future projections in median flow conditions were performed

based on the regional bimonthly downscaling approach and the
ABT statistical method, according to two scenarios and analysed
for three periods, namely 2025–2050, 2050–2075 and 2075–2100
(Fig. 7). Globally, the median flow conditions decrease in both nival
(�17%) and pluvial (�15%) systems (Fig. 7a and b). In nival systems
(Fig. 7a), this decrease is more particularly severe in spring



Fig. 7. Future relative changes (RC) in seasonal flow conditions projected for nival
(a) and pluvial (b) regimes. Relative changes are highlighted for three periods,
namely 2025–2050 (black), 2050–2075 (grey) and 2075–2100 (light grey) accord-
ing to scenarios A2 and A1B.

Fig. 6. Boxplot representing the variability in the performance of statistical
downscaling models, as the variance explained (R2) in modelling three fortnightly
percentiles of river flow, namely percentiles 10% (P10), 10% (P50) and 90% (P90).
Comparison is made between: (a) statistical downscaling models (ABT = aggregated
boosted trees; GAM = generalized additive model; GLM = generalized linear model;
ANN = artificial neural network); (b) downscaling approaches (PD = point daily
downscaling; PI = point daily downscaling with integrated season and anomalies;
PF = point fortnightly downscaling; RD = regional daily downscaling; RI = regional
daily downscaling with integrated season and anomalies; RF = regional fortnightly
downscaling); (c) hydrological regimes ranging from nival (cluster 1; dark grey) to
pluvial (cluster 5; white); (b) seasons, namely winter (DJF), spring (MAM), summer
(JJA) and autumn (SON).
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(RCMAM = �40%) and autumn (RCSON = �24%) than in winter
(RCDJF = �7%) and summer (RCJJA = �7%). The future relative change
of flows in nival systems is not significantly different between the
A2 and A1B scenarios (paired t-test, p = 0.32) nor between the dif-
ferent periods (one-way Anova, p = 0.45). In pluvial systems
(Fig. 7b), flows could globally increase in winter (RCDJF = +20%)
while decreasing during the other seasons (RCMAM = �30%,
RCJJA = �32% and RCSON = �26%). The relative changes in pluvial
systems are relatively the same according to the A2 and A1B sce-
narios, excepted in spring where flows decrease dramatically un-
der the A2 scenario (Fig. 7b; RCMAM = �50%). Globally for both
scenarios, the relative changes of flows in pluvial systems are sig-
nificantly different between the three periods in winter only
(Fig. 7b; one-way Anova; p < 001).
Discussion

The discussion will address the three main questions men-
tioned in the Introduction. Firstly, the technical aspects related to
the different downscaling strategies will be discussed to highlight
their main strengths and limits as well as some possibilities of
improvements. Secondly, the reliability of the downscaling frame-
work will be discussed in regards to the physical meaning linking
atmospheric factors to streamflow variability according to nival
and pluvial hydrological systems. Thirdly, future flow projections
in nival and pluvial systems will be analysed to illustrate the appli-
cability of the downscaling framework for future climate change
impact studies.

Comparison between the different statistical downscaling strategies

In this study, a direct statistical downscaling approach from
GCM to streamflow variability was experimented, which is less
commonly applied than the approach involving an intermediate
hydrological model between GCM and streamflow to reproduce
the hydrological cycle (Fowler et al., 2007). While a direct down-
scaling approach may allow the assessment of the relationship be-
tween flow and atmospheric process over large spatial scales more
easily than if using an intermediate hydrological model, some limits
should be considered. Particularly, the direct downscaling approach
was developed from a deterministic point of view by assuming that
the variability of streamflow was influenced by climate factors only.
Thus the direct downscaling approach developed in this study do
not explicitly take into account for some physical factors, such as
the land use and soil cover, which interact with climate and influ-
ence flow-pathways (e.g., interception, infiltration and groundwa-
ter processes) and may vary under future climate. In this context,
using a hydrological model that classically integrates those physical
factors within a delimited structure of the river catchment (e.g.,
HBV; Lindstrom et al., 1997) may provide a more realistic projec-
tion of the potential future hydrological conditions than the use
of a direct downscaling approach. However, by comparing different
statistical downscaling approaches according to different spatial/
time scale strategies and statistical models, our study has revealed
three key results encouraging further developments for the use of
direct statistical downscaling approaches to assess the potential
impact of climate change on hydrological resources.
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Firstly, the downscaling performances using the regional ap-
proach did not deteriorate too much the quality of the projected
fortnightly statistics in comparison to the point downscaling. This
makes the regional approach very attractive from a technical point
of view as well as for the understanding of large-scale hydro-cli-
matic processes. Technically, the regional approach is 10 times fas-
ter to compute than the local one, approximately 30 min on a
regular computer to calibrate the four statistical methods. Further-
more, the regional approach has shown to summarize satisfactorily
the key relationship between climate and streamflow variability
according to the different hydrological systems ranging from nival
to pluvial. These two specificities make the regional approach of
particular interest to extend feasibly the downscaling framework
of streamflow across Europe. Finally, a few additional features
could be added to the regional downscaling approach to improve
the regional flow projections from GCM outputs, such as integrat-
ing the land cover, geology and soil covers to better identify hydro-
logical region. The spatial autocorrelation between hydrological
sites could be also integrated into a statistical downscaling frame-
work of streamflow, which has never been done to our knowledge,
for example to help projecting the flow variability from atmo-
spheric process to ungauged hydrological stations.

Secondly, the fortnightly flow percentiles downscaling recorded
better performances than daily and daily integrated downscaling,
especially for high flow percentiles. These results are in agreement
with studies focused on the downscaling of extreme climate events
which highlighted good performances when downscaling seasonal
extreme indices derived from daily climate data (Moberg and Jones,
2005; Hanson et al., 2007). The daily direct and daily integrated
downscaling simulations were shown to reproduce accurately the
daily flow seasonal cycle across the study area but failed to simulate
the magnitude of high flow events. The difficulty for those two daily
approaches to simulate high flow events may come from the statis-
tical inability of models to relate high flow events to climate pro-
cesses. Since high flow events may result from local climate
processes and controlling processes such as localised convective
precipitation or orographically, enhanced precipitation and thus
the simulation of extreme floods from large-scale atmospheric con-
ditions may not be satisfactorily simulated. The proposed down-
scaling of daily anomalies suffered the incapacity of the models to
take into account for the seasonal variation in the relationship be-
tween the daily mean atmospheric processes and the daily anoma-
lies. Thus, the downscaling of daily anomalies could be improved by
possibly adding a seasonal signal (e.g., sin and cosin values related
to the different months) to relate the daily mean atmospheric pro-
cesses to the daily anomalies at a given season; or, even more sim-
ply, by conditioning the downscaling model per season. Moreover,
the downscaling of daily anomalies could also take advantage of the
extreme value theory (Coles, 2001; Katz et al., 2002; Vrac and Na-
veau, 2007) to improve high percentiles simulations. Recent studies
have also characterized drought and floods at the daily time scale in
relation to circulation patterns using fuzzy coding (e.g., Bardossy
et al., 1995; Samaniego and Bardossy, 2007).

Secondly, the non-linear statistical models such as aggregated
boosted tree, generalized additive models and artificial neural net-
works performed better than the generalized linear models to pro-
ject the hydrological variability from atmospheric processes. Some
similar results have been highlighted by Cannon and Whitfield
(2002) and Ghosh and Mujumdar (2008) who respectively applied
an ensemble of neural networks and support vectors machines to
forecast streamflow from atmospheric processes. Although all
three non-linear statistical models performed comparably in our
study, the best performance was obtained for the aggregated
boosted trees models. To our knowledge, this study is the first
application of the aggregated boosted tree method for climate
downscaling studies. However, earlier studies from Elith et al.
(2008) and De’ath (2007) in ecology confirmed the relatively high-
er predictive power of boosted trees than that of other statistical
methods. Anyway, since none statistical method may definitely as-
sumed to be the best one, especially for climate change impact
studies, it would worth to take into the uncertainty in downscaling
projections from different statistical methods.

Relationship between atmospheric factors and streamflow variability

The hydrological response in catchments results from the com-
plex interactions between hydro-climatic conditions, for example
rainfall intensity and duration and the condition of soil moisture
preceding a rainfall event, and the physical characteristics of the
catchment, namely the land cover, the morphology of the river net-
work and the soil characteristics. The hydrological cycle may be
viewed as a balance between the evaporation and precipitation pro-
cesses which drive the dynamics of water and the active flow-path-
ways regulating the soil moisture, the infiltration, groundwater
recharge and surface runoff (Sun and Pinker, 2004; Li et al., 2007).

Atmospheric processes are generally related to river flows
through atmospheric weather regimes (Kingston et al., 2006).
Atmospheric weather regimes characterize the large spatial scale
structure of a given atmospheric variable, often geopotential
height, sea level pressure or specific humidity at different atmo-
spheric levels, which are then used to relate flow dynamics. This
was done by Kingston et al. (2006) in Britain; Stewart et al.
(2005) and Molnár and Ramírez (2001) in north-western New
Mexico; Anctil and Coulibaly (2004) and Déry and Wood (2004)
in Canada; Krepper et al. (2003) in Uruguay; Lawler et al. (2003)
in south-west Iceland; Struglia et al. (2004) across the Mediterra-
nean region; and Ye et al. (2004) in Siberia.

In this study, a simplified representation of the relationship be-
tween atmospheric fields and flow generation was developed
throughout five synthetic regional atmospheric factors derived
from clustering and principal component analysis. Those five fac-
tors were related to precipitation, pressure, temperature, short-
wave solar radiation and heat flux and they may show different
or combined effect on the hydrological cycle. For example, evapo-
ration mainly depends on the energy available in the system (e.g.,
heat fluxes, temperature, shortwave radiations) as well as the
capacity of the air to store water (e.g., the pressure of water satu-
ration in the air influence the air relative humidity). Similarly, pre-
cipitation results from a change in temperature and/or pressure,
conditioned by a sufficient air relative humidity (Hufty, 2001).
The sensitivity analysis of flow to those five atmospheric predictors
revealed that pluvial and nival systems were mostly driven by
temperature and shortwave solar radiation, i.e. by evaporation pro-
cesses, more than by precipitation. Such results are in agreement
with those of Phillips et al. (2003), who highlighted the main influ-
ence of regional temperature on flow in two pluvial rivers in south-
ern Britain. Furthermore, the influence of temperature and
shortwave radiation on streamflow variability showed some differ-
ences between nival and pluvial regimes.

In pluvial regimes, precipitation tends to fall as rain all year and
the air temperature is negatively correlated to flow all year. That is,
an increase in air temperature tends to actively increase the evap-
oration process and reduce the soil moisture, as shown by the neg-
ative correlation between the mean air temperature and flow in
summer. In winter, the evaporation is reduced while the frequency
and the intensity of precipitation increases, which leads to a satu-
ration of the soil and higher groundwater levels. Thus, rainfall in
winter is likely to contribute directly to a rising flow when the
catchment is saturated, as shown by the positive correlation be-
tween the mean precipitation and flow in pluvial catchments.

Conversely in nival catchments, winter precipitation are gener-
ally stored as snow until spring, which do not contribute to soil



290 C. Tisseuil et al. / Journal of Hydrology 385 (2010) 279–291
moisture saturation and do not consequently lead a rising flow, as
confirmed by a very weak are correlation between mean precipita-
tion and flow in winter (Fig. 4c). From spring, the rising shortwave
solar radiations and temperature triggers snowmelt and typically
generates a flow increase in nival systems, which may continue un-
til summer. Shortwave solar radiations remain positively corre-
lated to flow in spring and summer (Fig. 4b), possibly indicating
a stronger control than temperature on the snowmelt process, as
confirmed by some recent studies on snowmelt runoff modelling
(Li and Williams, 2008).

Globally, high flows were less well simulated in nival systems
than in pluvial ones. Although, the shortwave radiation and tem-
perature were shown to be important processes for trigging the
snowmelt from spring to summer, the prediction of high flows
from snowmelt remains very difficult. This may be due to an
inability for the downscaling models to capture the subtleties of
snow-pack accumulation over the winter, ripening and melt.
Future hydrological projections in nival and pluvial systems

The suitability of the downscaling framework for future climate
change impact studies was illustrated using a single statistical
method, namely the aggregative boosted trees, and the regional ap-
proach to highlight how the nival and pluvial systems may respond
to future climate change over the region. The interpretation of these
future projections should be considered carefully since only one
GCM model was used to characterize the future climate. Further-
more, the relevance of hydrological projections could be also criti-
cized by the delta method used to derive the future atmospheric
predictors for the regional downscaling. A major disadvantage of
the delta approach is that representation of extremes from future
climate scenarios effectively gets filtered out in the transfer process.
The extremes resulting from this approach are simply the extremes
from present climate observations that have either been enhanced
or dampened according to the delta factors (Graham et al., 2007).

Globally, streamflow could decrease in both nival and pluvial
systems over the region of study. In nival systems, the decrease
of flow could be particularly important in spring while the precip-
itation and temperature increases could lead to the snow cover
storage reduction and to an earlier melt (Caballero et al., 2007).
In pluvial regimes, the rising precipitation in winter could be re-
lated to the dramatic increase of streamflow in winter. These re-
sults are in agreement with Caballero et al. (2007) who assessed
the potential future changes of flows based on the mechanistic
hydrological model, SAFRAN-ISBA-MODCOU (SIM), applied to the
Adour-Garonne basin. However, recent applications of the SIM
models over the same region highlighted a global diminution of
precipitation all over the year leading to likely the same global
diminution of flows all over the year (Boe et al., 2009).
Conclusion and wider perspective

To our knowledge, this study is one of the first one to compare
extensively a number of statistical downscaling approach to pro-
ject the hydrological variability directly from GCM atmospheric
processes for a wide range of hydrological conditions. A first
important result showed the ability of the downscaling modelling
framework to highlight the contrasted dynamics of streamflow
variability in nival and pluvial systems in response to key atmo-
spheric processes. The results also emphasised the particular inter-
est of using a regional approach to downscale directly the
hydrological variability from GCM, for three reasons at least: (i)
the capacity to capture the key relationship between the atmo-
spheric and hydrological variability within each hydrological sys-
tem; (ii) the possibility to extend feasibly the downscaling
approach to higher spatial scales such as Europe; (iii) the possibil-
ity to improve the approach by taking into account for the spatial
autocorrelation between sites or adding physical information to
better help identifying hydrological regions or projecting hydrolog-
ical changes at ungauged sites. This study was also the first appli-
cation of the aggregated boosted trees method in statistical
downscaling studies of hydro-climatology. That is, the aggregated
boosted trees appeared to be the most efficient and stable method
for modelling river flows in this case study, in comparison to others
methods such as generalized linear models, generalized additive
models and neural networks.

The main objective of this study was essentially to build and
validate a downscaling framework of river flow directly from
GCM outputs, to be used for future climate change impact studies.
Thus, results from the projected future changes in the hydrology
between nival and pluvial regimes were preliminary; however
they were sufficiently encouraging to further development in the
downscaling of river flow. For example, an ensemble method could
be developed to downscale seasonal forecasts or future hydrologi-
cal changes in different hydrological systems, by using several
GCM, downscaling methods and different scenarios. Although this
type of ensemble procedure has already been applied in several fu-
ture hydrological studies based on an hydrological model to make
the connection between downscaled climate conditions to river
streamflow (Graham et al., 2007; Boe et al., 2009; Hagemann
et al., 2009; Kay et al., 2009; Tapiador et al., 2009), to our knowl-
edge it has never been applied to direct statistical downscaling
framework of river flow from GCM. Further investigations are also
under progress to build an integrated model chain linking the di-
rectly downscaled hydro-climatic conditions from GCM to some
ecological models e.g., to project the potential impact of future hy-
dro-climatic changes on the river ecosystem, from the nutrient
loads to the structure of hydro-biological organisms.
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