Greenhouse gas emissions: present trends and future requirements

Michael Raupach

CSIRO Marine and Atmospheric Research ESSP Global Carbon Project

Thanks: GCP colleagues (especially Pep Canadell)
LSCE colleagues (especially Philippe Ciais, Peter Rayner)

Rapid change on Planet Earth

Two ecologies

- The biopshere
 - A complex adaptive system based on carbon
 - Evolving for 3.5 billion years
- The anthroposphere
 - One species finds a new evolutionary trick: use of external energy
 - Evolving for thousands of years
 - Biologically based, with extra technological, social, cultural levels

A phase transition in human ecology

 Since 1800, global wealth and per-person resource use have doubled every 45 years

- Growth in consumption:
 - essential before 1900
 - disaster after 2050

Feedbacks in the carbon-climate-human system

Outline

Introduction: the carbon-climate-human system

- Trends in CO₂ emissions from fossil fuels
 - Update to 2007
 - Development trajectories and implications
- The full carbon budget and the airborne fraction (AF)
 - The AF is increasing
 - BUT the AF is remarkably steady
 - The AF is the gateway from forcing to response
- Responses: defining and sharing the burden

Global CO₂ emissions from fossil fuels to 2007

 Emissions from fossil fuels and industry (CDIAC data)

Year	Emissions (GtC/y)
2004	7.69
2005	7.99
2006	8.23
2007	8.47

Growth rates (CDIAC data)

Decade	Growth rate
1980-89	1.90 % y ⁻¹
1990-99	$0.93 \% y^{-1}$
2000-07	$3.47 \% y^{-1}$

Growth rates of fossil-fuel CO₂ emissions: SRES scenarios and observations 2000-2005

Emissions growth (%/y)

Bars: Observations

Solid points: Marker scenario

Open points: Other scenarios

Black line: Scenario average

CO₂ from fossil fuels

Emissions from developing countries are growing fast

Unequal distribution of cumulative emissions

Emissions from solid, liquid, gas fuels

- Global : (S, F, G) = (43, 37, 20)
- China: solid fuels dominate
- D2: liquid fuels dominate
- FSU: gas fuels dominate

3000

2500

2000

1500

1000

500

Gas fuel emissions (MtC/y)

Drivers of global emissions

Development trajectories: energy

Plot per capita primary energy against income, from 1980 to 2005

Development trajectories: CO₂ emissions

Plot per capita FF emissions against income, from 1980 to 2005

CO₂ emissions from land use change Net emissions from tropical deforestation

CO₂ emissions from land use change The effect of differing biomass densities

Outline

- Introduction: the carbon-climate-human system
- Trends in CO₂ emissions from fossil fuels
 - Update to 2007
 - Development trajectories and implications
- The full carbon budget and the airborne fraction (AF)
 - The AF is increasing
 - BUT the AF is remarkably steady
 - The AF is the gateway from forcing to response
- Responses: defining and sharing the burden

Growth in atmospheric CO₂

◆ Atmospheric CO₂ concentration in 2007 = 382.7 ppm

Growth rates:

• 1970-79: 1.3 ppm y⁻¹

• 1980-89: 1.6 ppm y⁻¹

• 1990-99: 1.5 ppm y⁻¹

• 2000-07: 2.0 ppm y⁻¹

Climate change at 55% discount

Where CO₂ goes:

- 45% to atmosphere
 - increasing
- ◆ 30% to land
 - steady

- 25% to ocean
 - decreasing

Almosphere

0.7

Increasing trend in airborne fraction

- Airborne fraction (AF) = (dC_a/dt) / (F_{Foss} + F_{LUC})
- Without noise reduction:
 - AF trend = 0.24 %/y
 - Prob (trend > 0) = 0.8
- With noise reduction:
 - AF trend = 0.24 %/y
 - Prob (trend > 0) = 0.9

Implications of AF trend

- ◆ Total (land + ocean) CO₂ sinks are not keeping pace with total emissions
 - (even though sinks are increasing overall)
- Most current carbon-climate models (C⁴MIP) do not see an increasing AF
 - This is a severe model test

Why is AF so steady? Two remarkable facts

- Emissions have grown exponentially since 1850
 - growth rate = 0.02 y⁻¹
 - doubling time = 36 y

- Land and ocean sinks are nearly first-order-kinetic:
 - total sink = $k_s(CO_2 280)$
 - sink rate k_S = 0.025 y⁻¹
 - halving time = 28 y
 - but not exact:
 k_S is decreasing slowly

Consequence: AF varies little as sinks weaken

- Assume (1) sinks obey first-order kinetics, (2) emissions grow exponentially
- Equation for CO_2 : $C_a'(t) = F_{E0} \exp(k_E t) k_S(C_a C_q)$
- Analytic solution:

$$C_a(t) = C_q + \frac{F_{E0}(e^{k_E t} - e^{-k_S t})}{k_E + k_S}$$

Airborne fraction:

$$AF(t) = \frac{k_E}{k_E + k_S} + \frac{k_S e^{-(k_E + k_S)t}}{k_E + k_S}$$

- Implications:
 - Predicted present AF = 0.45
 - Fractional sensitivity of AF to $k_S = -(1-AF) \approx -0.5$ (now)
 - AF varies little as sinks weaken because: sinks are weakening slowly sensitivity of AF is low

Drivers of CO₂ emissions and CO₂ growth rate

Total CO₂ emissions (Kaya)

$$\begin{bmatrix} \text{Emission} \end{bmatrix} = \begin{bmatrix} \text{Pop} \end{bmatrix} \begin{bmatrix} \text{Per-cap} \\ \text{GDP} \end{bmatrix} \begin{bmatrix} \text{C intensity} \\ \text{of GDP} \end{bmatrix}$$

$$+ 1.8 = + 1.7 + 1.8 - 1.7$$
 (growth rates in % y⁻¹)

CO₂ growth rate (extended Kaya)

$$\begin{bmatrix} CO_2 \\ growth \end{bmatrix} = \begin{bmatrix} AF \end{bmatrix} \begin{bmatrix} Pop \end{bmatrix} \begin{bmatrix} Per-cap \\ GDP \end{bmatrix} \begin{bmatrix} C \text{ intensity} \\ of GDP \end{bmatrix}$$

$$+2.0 = +0.2 + 1.7 + 1.8 - 1.7$$

Outline

- Introduction: the carbon-climate-human system
- Trends in CO₂ emissions from fossil fuels
 - Update to 2007
 - Development trajectories and implications
- The full carbon budget and the airborne fraction (AF)
 - The AF is increasing
 - BUT the AF is remarkably steady
 - The AF is the gateway from forcing to response

Responses: defining and sharing the burden

The tragedy of the commons

- and beyond
- Hardin (1968) model of herders on a common pasture
 problem has no purely technical fix
- Tragedy-of-commons problems can be solved!
 - Adaptive governance in complex systems

Requires: Information

Conflict resolution

Rule compliance

Infrastructure

Readiness for change

A broader appreciation of wealth:
 Natural, physical, financial, human, social capital

Hardin G (1968) The tragedy of the commons. Science **162**, 1243.

Dietz T, Ostrom E, Stern PC (2003) The struggle to govern the commons. Science **302**.

Pretty J (2003) Social capital and the collective mangement of resources. Science **302**.

Reprinted in Kennedy D et al. (2006) Science Magazine's State of the Planet 2006-2007. Island Press, Washington DC.

Mitigation challenge as a cap on cumulative emissions

- Target to avoid dangerous climate change:
 - Stabilise at CO₂e(Kyoto GHGs) < 450 to 500 ppm
- This requires a cap Q on cumulative global CO₂ emissions (for all time)
 - CO₂ emission is a finite, non-renewable resource!
 - CO₂ emissions cap is less than Q = 500 PgC from 2000-2100
 - Compare: 500 PgC from 1800 to 2000
 - Robust rule: 1 PgC = 0.25 ppm CO₂ in atmosphere at current CO₂ airborne fraction
- Influences on CO₂ cap:
 - Future emissions of other GHGs: moderate (< 100 PgC)
 - Future of CO₂ airborne fraction: large (> 100 PgC)
 - Future of climate sensitivity: very large (~ 200 PgC)

Sharing future emissions

- Separate (1) cap, (2) sharing, (3) timing, (4) compliance
- Sharing: cumulative emissions Q can be shared in 2 basic ways:
 - by population (P_i for nation i)
 - by wealth-based measures, eg present emissions (F_i)
 - Shares must lie between these limits, so quota (Q_i) for country i is:

$$Q_i = Q\left((1-w)\frac{F_i}{F} + w\frac{P_i}{P}\right) \qquad \left(\text{with } F = \sum F_i, P = \sum P_i\right)$$

• Time to exhaust quota at current emission:

$$T_i = T\left((1-w) + w\frac{F/P}{F_i/P_i}\right) \qquad \left(\text{with } T_i = \frac{F_i}{Q_i}, T = \frac{F}{Q}\right)$$

Weight w (between 0 and 1) is a "global equity number"

Sharing emissions: Quota Q = 500 PgC

- *T_i* = time to exhaust quota for region *i* (start in 2004)
 - steady emissions (at 2004 levels)

- growing emissions (at 2004 rates)
- Q = 500 PgC =>
 - $\Delta[CO_2]$ ≈ 125 ppm
 - $[CO_2] \approx 500 \text{ ppm}$

Sharing emissions: Quota Q = 250 PgC

- *T_i* = time to exhaust quota for region *i* (start in 2004)
 - steady emissions (at 2004 levels)

- growing emissions (at 2004 rates)
- ◆ Q = 250 PgC =>
 - ∆[CO2] ≈ 60 ppm
 - [CO2] ≈ 440 ppm

What do we do?

Next steps

- Efficient appliances, insulation, ...
- Passive heating, cooling
- Efficient vehicles
- Reduced travel (offsets to renewables)
- Forestry (plant, manage, store, avoid deforestation)

Transformations

- Non-fossil energy infrastructure
- Renewable energy storage (GW-days)
- Distributed urban energy (use "waste")
- Redesigning urban energy, transport, water, lifestyles, ...

- Europe's first commercial solar thermal power plant at la Mayor, near Seville, Spain
- 11 MW, expanding to 300 MW
- Molten salt heat storage

Note: Abatement opportunities are not additive to those of previous years Source: McKinsev Australia Climate Change Initiative

What more? Four essential response components

Technical

- Broad portfolio: conservation, renewables, cleaner fossil fuels, ...
- A workable transition pathway

Economic

Market drivers: greenhouse accounting and trading mechanisms

Policy

- Agreed cap on cumulative emissions
- Agreed rules to govern national emission flux trajectories
- Policies to make greenhouse costs visible (carbon price signal)
- Support for innovation

Cultural and social: building social capital across connected scales

- Global: protection of the shared earth system as a global imperative
- Local: decoupling quality of life from consumption

Summary

- Trends in CO₂ emissions from fossil fuels
 - Growth: $3.47 \% y^{-1}$ for 2000-07 (up from $1\% y^{-1}$ for 1990-99)
 - Increasing emissions share from developing countries
 - Tight connections: energy <> wealth, and carbon <> energy
 - Our future wellbeing depends on breaking these connections
- The full carbon budget and the airborne fraction (AF)
 - The AF is increasing
 - BUT the AF is remarkably steady sinks are nearly first order
 - The AF is the gateway from emissions forcing to climate response
- Responses: defining and sharing the burden
 - Cap on cumulative emissions: 500 GtC (world has 35 y supply)
 250 GtC (world has 21 y supply)
 - "Global equity weight" provides a simple means of sharing
 - Response components: technical, economic, policy, socio-cultural

We are starstuff
billion-year-old carbon
We are golden
caught in the devil's bargain

(Joni Mitchell, Woodstock)

