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Rapid change on Planet Earth
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Two ecologies

The biopshere
A complex adaptive system based on carbon
Evolving for 3.5 billion years

The anthroposphere
One species finds a new evolutionary trick: use of external energy
Evolving for thousands of years
Biologically based, with extra technological, social, cultural levels



A phase transition
In human ecology

+ Since 1800, global wealth
and per-person resource
use have doubled every
45 years

¢ Growth in consumption:
® essential before 1900
® disaster after 2050

Angus Maddison ( )
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Feedbacks in the carbon-climate-human system
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Introduction: the carbon-climate-human system

Trends in CO, emissions from fossil fuels
¢ Update to 2007
® Development trajectories and implications

The full carbon budget and the airborne fraction (AF)
® The AF is increasing
® BUT the AF is remarkably steady
® The AF is the gateway from forcing to response

Responses: defining and sharing the burden
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Growth rates of fossil-fuel CO, emissions:
SRES scenarios and observations 2000-2005

¢ Emissions growth (%/y)

¢ Bars: Observations
¢ Solid points: Marker scenario
¢ Open points: Other scenarios

¢ Blackline: Scenario average
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Raupach et al. (2007) PNAS
Updated to 2005 with IEA data

CO, from fossil fuels
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Emissions from developing countries are growing fast
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Unequal distribution of cumulative emissions
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1 Gas fuel emissions (MtCly)

Emissions from solid,
liquid, gas fuels
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Drivers of global emissions

+ Kaya Identity
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Raupach (2008) unpublished

Development trajectories: energy

+ Plot per capita primary energy against income, from 1980 to 2005
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Development trajectories: CO, emissions

Raupach (2008) unpublished

+ Plot per capita FF emissions against income, from 1980 to 2005

Per capita FF emissions (tC/y/person)
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Raupach (2008) unpublished
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CO, emissions from land use change
Net emissions from tropical deforestation
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CO, emissions from land use change
The effect of differing biomass densities

Regional Emissions from LUC&F
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Introduction: the carbon-climate-human system

Trends in CO, emissions from fossil fuels
¢ Update to 2007
® Development trajectories and implications

The full carbon budget and the airborne fraction (AF)
® The AF is increasing
® BUT the AF is remarkably steady
® The AF is the gateway from forcing to response

Responses: defining and sharing the burden



Growth in atmospheric CO,

¢ Atmospheric CO, concentration in 2007 = 382.7 ppm

¢ Growth rates:
® 1970-79: 1.3 ppmy~’
® 1980-89: 1.6 ppmy~’
® 1990-99: 1.5 ppm y™’
® 2000-07: 2.0 ppm y’




Global CO, budget 1850-2007
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Global CO, budget 1850-2007
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Global CO, budget 1850-2007
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Climate change
at 55% discount

Where CO, goes:

¢ 45% to atmosphere
® increasing

¢ 30% to land
¢ steady

¢ 25% to ocean
® decreasing

Canadell et al. (2007) PNAS



Increasing trend in
airborne fraction

+ Airborne fraction (AF) =
(dCa/dt) / (FFoss + I:LUC)

\

¢ Without noise reduction:
® AF trend = 0.24 %ly
® Prob (trend >0)=0.8

¢ With noise reduction:
® AF trend = 0.24 %ly
® Prob (trend >0)=0.9

Canadell et al. (2007) PNAS
Raupach et al. 2008, Biogeosciences (submitted)
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Implications of AF trend

+ Total (land + ocean) CO, sinks are not keeping pace with total emissions
® (even though sinks are increasing overall)

+ Most current carbon-climate models (C*MIP) do not see an increasing AF
® This is a severe model test

observed

AF growth rate (%ly)

@ Uncoupled
-1.4 - @ Coupled
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Why is AF so steady?
Two remarkable facts

CO2 Emissions (GtCly)

+ Emissions have grown —FF
exponentially since 1850 _'II_'Utcl
® growth rate = 0.02 y L Eg)(pa

® doublingtime =36y 0.1 | | |
1850 1890 1930 1970 2010

0.06 |

+ Land and ocean sinks are ~ 008 h
nearly first-order-kinetic: > | “ | &
* total sink = kg(CO, - 280) . " ‘ i i q 1 Lt
® sink rate kg = 0.025 y £ °-° NI AT | A |v \ | {h k
® halving time =28y % 0.04 " | h | u | ‘ *‘
® but not exact: 22 \(

|

K is decreasing slowly

1960 1970 1980 1990 2000



Consequence: AF varies little as sinks weaken

¢ Assume (1) sinks obey first-order kinetics, (2) emissions grow exponentially

¢ Equation for CO.;: Ca'(t) _ |:E0 exp(kEt) — kS (Ca—Cq)

+ Analytic solution:

AF
¢ Airborne fraction: K 1A
AF(t) = —F¢
0= 5
>
0.8 kelke

¢ Implications:
® Predicted present AF = 0.45
® Fractional sensitivity of AF to kg = —(1-AF) = -0.5 (now)

® AF varies little as sinks weaken because: sinks are weakening slowly
sensitivity of AF is low



Drivers of CO, emissions
and CO, growth rate

¢ Total CO, emissions (Kaya)
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Outline

¢ Introduction: the carbon-climate-human system

¢ Trends in CO, emissions from fossil fuels
¢ Update to 2007
® Development trajectories and implications

+ The full carbon budget and the airborne fraction (AF)
® The AF is increasing
® BUT the AF is remarkably steady
® The AF is the gateway from forcing to response

——% + Responses: defining and sharing the burden



The tragedy of the commons
— and beyond

+ Hardin (1968) - model of herders on a common pasture
- problem has no purely technical fix

¢ Tragedy-of-commons problems can be solved!
® Adaptive governance in complex systems

® Requires: Information
Conflict resolution
Rule compliance
Infrastructure
Readiness for change

¢ A broader appreciation of wealth:
Natural, physical, financial, human, social capital

Hardin G (1968) The
tragedy of the commons.
Science 162, 1243.

Dietz T, Ostrom E, Stern
PC (2003) The struggle
to govern the commons.
Science 302.

Pretty J (2003) Social
capital and the collective
mangement of resources.
Science 302.

Reprinted in Kennedy D
et al. (2006) Science
Magazine's State of the
Planet 2006-2007. Island
Press, Washington DC.



Mitigation challenge as a cap on cumulative emissions

¢ Target to avoid dangerous climate change:
¢ Stabilise at CO,e(Kyoto GHGs) < 450 to 500 ppm

¢ This requires a cap Q on cumulative global CO, emissions (for all time)
® CO, emission is a finite, non-renewable resource!
® CO, emissions cap is less than Q = 500 PgC from 2000-2100
¢ Compare: 500 PgC from 1800 to 2000

®* Robust rule: 1 PgC = 0.25 ppm CO, in atmosphere at current CO, airborne fraction

¢ Influences on CO, cap:
® Future emissions of other GHGs: moderate (<100 PgC)
® Future of CO, airborne fraction: large (> 100 PgC)
® Future of climate sensitivity: very large (~ 200 PgC)



Sharing future emissions

& Separate (1) cap, (2) sharing, (3) timing, (4) compliance

¢ Sharing: cumulative emissions Q can be shared in 2 basic ways:
— by population (P, for nation i)
— by wealth-based measures, eg present emissions (F,)

® Shares must lie between these limits, so quota (Q;) for country i is:
F P :
Q = Q((l—W)E' + WF'j (Wlth F:ZFi, P=ZPi)

® Time to exhaust quota at current emission:

_ F/P with T=H 7-F
T _T((l_W)JFW?] [ ith T Q" T Q)

®* Weight w (between 0 and 1) is a "global equity number"
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What do we do?

¢ Next steps
® Efficient appliances, insulation, ...
® Passive heating, cooling
¢ Efficient vehicles
® Reduced travel (offsets to renewables)

® Forestry (plant, manage, store, avoid
deforestation)

¢ Transformations

° . . ¢ Europe's first commercial solar
Non-fossil energy infrastructure thermal power plant at la Mayor,

® Renewable energy storage (GW-days) near Seville, Spain

11 MW, expanding to 300 MW

® Distributed urban energy (use "waste")
Molten salt heat storage

® Redesigning urban energy, transport,
water, lifestyles, ...
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o Reduction balow [ Industry B Power

Cost of 1990 levels, parcent [ ] Buildings ] Transport
A%/t CO.e . Braak-aven point I Forestry B Agiculture
Industrial CCS 7
Coal-to-gas shifts, new builds —
160
Energy afficiency, baszic matarials production
Reforastation @ @
Coal CCS new '
100 On-shore wind :
Forest manageamant o
Afforastation, pastura ¥
B0
Agriculture—soils
Agriculture—livestock
D =
Solar PV
Mt COse
-0 Coal CCS retrofit
Consarvation tillags Gaothermal
| Residential heating/ ventilation efficiency Avoided deforastation
100 Rafrigeration efficiency Sail €0y~
Residantial lighting efficiancy Afforestation, cropland —
— Biofuels Biomass —
-1E0 — Residential stand-by savings
— Commearcial lighting afficiency
— Residantial water heating efficiency
=200 — Car fual aconomy
L Commercial air handling
Motor systams
0 100 200 300 400 00 BOD

Mote: Abatement opporiunities are not additive to those of previous years
Source: McKinsev Australia Climate Change Initiative



What more? Four essential response components

¢ Technical
® Broad portfolio: conservation, renewables, cleaner fossil fuels, ...
® A workable transition pathway

¢ Economic
® Market drivers: greenhouse accounting and trading mechanisms

¢ Policy
® Agreed cap on cumulative emissions
® Agreed rules to govern national emission flux trajectories
® Policies to make greenhouse costs visible (carbon price signal)
® Support for innovation

+ Cultural and social: building social capital across connected scales
® Global: protection of the shared earth system as a global imperative
® Local: decoupling quality of life from consumption



Summary

¢ Trends in CO, emissions from fossil fuels
® Growth: 3.47 % y~' for 2000-07 (up from 1% y~' for 1990-99)
® Increasing emissions share from developing countries
® Tight connections: energy <> wealth, and carbon <> energy
® Our future wellbeing depends on breaking these connections

¢ The full carbon budget and the airborne fraction (AF)
® The AF is increasing
® BUT the AF is remarkably steady - sinks are nearly first order
® The AF is the gateway from emissions forcing to climate response

¢ Responses: defining and sharing the burden

¢ Cap on cumulative emissions: 500 GtC (world has 35 y supply)
250 GtC (world has 21 y supply)

® "Global equity weight" provides a simple means of sharing
® Response components: technical, economic, policy, socio-cultural



We are starstuff
billion-year-old carbon
We are golden
caught in the devil's bargain

(Joni Mitchell, Woodstock)
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