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[1] Reanalysis data and general circulation model outputs typically provide information at a
coarse spatial resolution, which cannot directly be used for local impact studies. Downscaling
methods have been developed to overcome this problem, and to obtain local‐scale information
from large‐scale atmospheric variables. The deduction of local‐scale extremes still is a
challenge. Here a probabilistic downscaling approach is presented where the cumulative
distribution functions (CDFs) of large‐ and local‐scale extremes are linked by means of a
transfer function. In this way, the CDF of the local‐scale extremes is obtained for a projection
period, and statistical characteristics, like return levels, are inferred. The input series are
assumed to be distributed according to an extreme value distribution, the Generalized Pareto
distribution (GPD). The GPD parameters are linked to further explanatory variables, hence
defining a nonstationary model. The methodology (XCDF‐t) results in a parametric CDF,
which is as well a GPD. Realizations generated from this CDF provide confidence bands.
The approach is applied to downscale National Centers for Environmental Prediction
reanalysis precipitation in winter. Daily local precipitation at five stations in southern
France is obtained. The calibration period 1951–1985 is used to infer precipitation over
the validation period 1986–1999. The applicability of the approach is verified by using
observations, quantile‐quantile plots, and the continuous ranked probability score. The
stationary XCDF‐t approach shows good results and outperforms the nonparametric CDF‐t
approach or quantile mapping for some stations. The inclusion of covariate information
improves results only sometimes; therefore, covariates have to be chosen with care.
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1. Introduction

[2] Currently coupled atmosphere‐ocean general circu-
lation models (GCMs) generate projections on a too coarse
scale to obtain information at local‐scale level [Meehl et al.,
2007]. Hydrological processes, for example, typically occur
on finer scales than those provided by GCM outputs
[Kundzewicz et al., 2007]. Downscaling methods are com-
monly used to infer from climate simulations of models to
local‐scale projections. Hydrological regional models are
in general driven with downscaled data, normally tempera-
ture and precipitation data. This means that precipitation is
one of the most relevant variables for hydrological impact
studies [cf., e.g., Quintana Seguí et al., 2010].
[3] Precipitation is difficult to model and to downscale,

mostly due to its high spatial and temporal variability and its
nonlinear nature. A variety of downscaling approaches exist,
they can be divided into dynamical downscaling approaches,
where a regional model is nested into a GCM, and prob-
abilistic downscaling approaches. No universal best method

exists, and thus many comparison studies have been carried
out, for example the PRUDENCE project [Christensen et al.,
2007], or the STARDEX project [Goodess et al., 2011]. A
recent overview over current downscaling approaches is
given by Maraun et al. [2010b].
[4] Here a probabilistic downscaling approach is presented,

and in the following we will concentrate on this branch of
methods. Downscaling comprises techniques such as the
use transfer functions (e.g., regression) [Wigley et al., 1990;
Wilby et al., 1998], or weather types [Vrac et al., 2007]. We
denote point data as local‐scale data and data having an
area as support, e.g., grid cells, as large‐scale data. Perfect
prognosis methods [cf. Rummukainen, 1997] establish a link
between local‐ and large‐scale observations. They may
apply this relationship to downscale outputs from numerical
models [e.g., Wilks, 2006]. To do so, the model has to sim-
ulate the large‐scale variable realistically. For some studies,
the weather sequences of local‐ and large‐scale variable can
be related to each other event by event. Newer downscaling
approaches, known as model output statistics methods, use
simulated mesoscale weather [Rummukainen, 1997]. They
establish a direct relationship between large‐scale variables
simulated by amodel, and local‐scale observations. Their aim
is to correct for model errors [see, e.g., Lenderink et al.,
2007]. Many downscaling approaches are hybrids of perfect
prognosis and model output statistics methods. An example
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are stochastic weather generators, which can be used for
downscaling as well. They generate time series of the local‐
scale variable by reproducing statistical properties of the
observations (commonly a weather variable) [e.g.,Wilks and
Wilby, 1999; Vrac and Naveau, 2007]. Until recently, most
studies have been based on the downscaling of mean values
[Fowler et al., 2007]. One focus of climate change studies is
yet the assessment of changes in extremes [Intergovernmental
Panel on Climate Change (IPCC), 2007], and according fra-
meworks for the downscaling of extremes have been lately
proposed by, for example, Friederichs and Hense [2007] and
Cannon [2011].
[5] Extreme value theory (EVT) deals with the assessment

of extreme, that is rare, events. EVT suggests the use of a
Generalized Extreme Value distribution for the probabilistic
modeling of maxima. According to the fundamental three
types theorem [Fisher and Tippett, 1928; Gnedenko, 1943],
there are only three distributions, which can arise as limiting
distributions of rescaled sample maxima. For values above
a high threshold, EVT indicates that the adequate CDF
comprising these three types corresponds to the Generalized
Pareto Distribution (GPD). EVT plays an important role
in risk assessment studies. A more detailed presentation
is provided by, for example, Leadbetter et al. [1983],
Embrechts et al. [1997], Katz [2002], and Khaliq et al.
[2006].
[6] Here we present a stochastic downscaling approach for

extremes which is in line withMichelangeli et al. [2009], and
which takes findings of extreme value theory into account.
We infer local‐scale extremes from large‐scale extremes,
where “extreme” is any value above a high threshold.
Another approachwould be to use thewhole set of large‐scale
values to infer the local‐scale extremes. But, at the present
time, this objective is overly complex because it means that
behavior of local extremes has to be probabilistically linked
to average and extreme large‐scale information. EVT is not
currently adapted to such a challenging framework. Further
studies are needed to assess the relationship between non-
extreme large‐scale events and extreme local‐scale ones.
Here hybrid distributions, which mix, for example, the
Gamma distribution and the GPD to model the whole distri-
bution of precipitation might be of interest [Vrac and Naveau,
2007; Furrer and Katz, 2008].
[7] In this paper we solely focus on the links from large‐

scale extremes and local extremes. Basically we assume that
a large‐scale extreme event implies a local‐scale extreme
event and this relationship is the subject of our study.
The cumulative distribution function (CDF) of large‐scale
extremes is linked to the CDF of the local‐scale extremes
by using a transfer function. The CDFs of the predictors are
assumed to be distributed according to an extreme value
distribution, the GPD. By letting the parameters of this dis-
tribution depend on covariates, further influencing vari-
ables can be integrated in the approach. The resulting CDF
provides statistical characteristics, such as quantiles. The
exploitation of CDF characteristics is a common procedure in
precipitation analysis [see, e.g., Vidal and Wade, 2009]. In
quantile regression, for example, the local‐scale CDF quan-
tiles are derived by means of a regression equation [cf.
Friederichs and Hense, 2007; Cannon, 2011]. Here, by
contrast, EVT is used to determine the transfer function
between the local‐scale quantile and the large‐scale predictor,

and the outcome is a complete CDF. The inferred local‐scale
CDF allows for an estimation of the potential sizes of local‐
scale extremes. The chronology, that is the time points of
occurrence of local‐scale extreme events, has to be deter-
mined separately [see, e.g., Benestad, 2010]. In the following
we will denote the presented approach as XCDF‐t, as an
extension of the CDF‐t approach [Michelangeli et al., 2009]
to extreme values. The precondition for XCDF‐t is a link
between the CDFs of local‐scale and large‐scale extremes,
which stays stable between calibration and prediction period.
XCDF‐t does therefore not require a realistic day‐to‐day
representation of the large‐scale variable and may be classi-
fied as model output statistics downscaling method. In case
the large‐scale data are biased, the bias has to be the same in
calibration and prediction period. However, in case covariates
are used to improve the description of the local‐scale
extremes, XCDF‐t is rather in perfect prognosis setting. In
this case it has to be verified that the large‐scale covariates are
simulated realistically by the model.
[8] In section 2 the data are presented. The methodology is

outlined in section 3, and the use of covariates is introduced in
section 4. Then, in section 5, results for the downscaling of
extremes of daily winter precipitation in southern France are
discussed, and a comparison with other methods is given.
Concluding remarks follow in section 6.

2. Data

[9] We use observations of daily precipitation (millimeters)
as local‐scale variable. The observations have been provided
by the European Climate Assessment & Dataset (ECA&D)
project, http://eca.knmi.nl. Daily NCEP (National Centers for
Environmental Prediction–National Center for Atmospheric
Research) reanalysis precipitation data are to be downscaled
to the observations (both variables have the same units).
[10] Reanalysis data are based on observations, they are

capable to reproduce certain characteristics of observed pre-
cipitation, e.g., spatial large‐scale patterns. However, model
physics and uncertainties lead to uncertainty in the resulting
reanalysis data product. Large biases may occur, depending
on type of reanalysis data, season, and region [cf. Widmann
and Bretherton, 2000; Bosilovich et al., 2008]. Bosilovich
et al. [2008] determined a moderate average difference
in precipitation of ‐1 mm/d between reanalysis data and
observations when looking at yearly averages in the region
of Southern France. This holds for all reanalysis products
assessed in this study, including NCEP reanalysis data. The
method proposed here does furthermore not rely on a realistic
day‐to‐day representation of the large‐scale variable. We
therefore regard NCEP reanalysis as adequate large‐scale
data for our study purposes.
[11] Five stations in Southern France, namely Marseille,

Perpignan, Mont‐Aigual, Nîmes and Sète, are assessed.
Winter seasons (November to Mars) for the time period
1951–1999 are analyzed. As calibration period we choose the
time span 1951–1985, and as verification period 1986–1999.
In Figure 1a the station locations are shown together with grid
cells indicating the resolution of the large‐scale precipitation
and of the covariates. The Mediterranean region is regularly
confronted with periods of strong wind and heavy precipi-
tation. The average duration of the heavy precipitation events
is about 29 h [Boudevillain et al., 2009]. Therefore it seems
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feasible to look at daily precipitation amounts and to neglect
the duration of the events. Parts of the Massif Central,
the Alps and the Pyrenees are located in the Mediterranean
region. The combination of a Mediterranean influence with a
mountainous area favors the occurrence of intense rain events
and consequently of devastating flash floods, especially in
autumn. This interplay determines the spatial structure of the
precipitation patterns [Berne et al., 2009; Boudevillain et al.,
2009]. In Figure 1b the topography of the Mediterranean
region is shown, and the mountain regions are indicated. The
southeastern part of the Massif Central (the Cevennes) is one
of the rainiest areas of the Mediterranean region [Nuissier
et al., 2008]. Stations Nîmes, Mont‐Aigoual, and partly
Sète lie in its sphere. During the analyzed seasons the
respective precipitation amounts reach up to 120 mm,
500 mm, and 140 mm per day. Perpignan is located near to
the Pyrenees, which potentially trigger convection. Preci-
pitation attains here up to 200 mm/d in the seasons analyzed.
Marseille is situated on the coastline, here more moderate
amounts up to 100 mm/d are recorded.
[12] Heavy precipitation events in the Mediterranean

region are typically caused by the following process: The
sea provides the moisture supply to the moderate to strong,
southerly to easterly, low‐level flow that feeds precipitation
events. Orographic forcing then continuously generates new
convective cells upwind of the Massif Central and thus
maintains a stationary mesoscale convective system [Ducrocq
et al., 2008].
[13] For the analysis, all gridded data have been bilinearly

interpolated to the station locations. In Figure 2, extreme
precipitation data are exemplarily depicted for station
Nîmes to give an impression of the local‐ and large‐scale
data used.
[14] Here excesses over a threshold constitute a set of

extreme events [Coles, 2001]. Extremes of the large‐scale
data in calibration and projection period, and of the local‐
scale observations in the calibration period serve as input
series for XCDF‐t. Therefore thresholds have to be deter-

mined for those data. The thresholds have to be chosen suf-
ficiently high to be able to assume a GPD distribution for the
excesses, because the GPD distribution arises as a limiting
distribution for high enough thresholds [Coles, 2001].
[15] XCDF‐t establishes a link between local‐ and

large‐scale extremes. Therefore it would be desirable from

Figure 2. Extreme precipitation (mm/d) is shown for station
Nîmes: observation extremes YC (grey circles, threshold at
7 mm) and large‐scale extremes XC (black circles, threshold
at 3.63 mm) in the calibration period, and verification
extremes (grey triangles, inferred threshold at 5.32 mm)
and large‐scale extremes XP (black triangles, threshold at
1.94 mm) in the projection period are depicted.

Figure 1. Stations assessed, which are located in southern France, including (a) some grid cells of NCEP
reanalysis precipitation (black dashed line) and covariate variables (e.g., slp, Z850,…) and (b) the topogra-
phy. Station Marseille is located at an altitude of about 54 m, Perpignan at 40 m, Mont‐Aigoual at 1565 m,
Nîmes at 100 m, and Sète at an altitude of about 30 m.
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a technical point of view to choose the threshold for the large‐
scale series in the calibration time period as lowest value for
which simultaneously local‐scale excesses occur. However,
small‐scale variability is not completely determined by large‐
scale extreme events. Indeed, the thresholds which have
been determined in this manner, were too low to be able to
assume a GPD distribution for the precipitation data assessed.
Therefore we chose higher thresholds for the large‐scale data,
which means that not all local‐scale extremes occur simul-
taneously with a large‐scale extreme. The assumed connec-
tion between local‐ and large‐scale extremes is nevertheless
strong (see below).
[16] We select a threshold separately for every station and

for every series. A general rule for the threshold choice, for
example, to take the topmost 5% of the data, led too often
to a violation of the assumption of a GPD distribution, or
the connection between large‐scale and local‐scale extremes
showed to be too weak. A suitable threshold is determined
by using the mean residual life plot, a fit over a range of
thresholds and quantile‐quantile plots (q‐q plots) [cf. Coles,
2001]. We test the appropriateness of a GPD distribution
for the excesses by means of the Anderson‐Darling test
(AD test) [Choulakian and Stephens, 2001]. To account for
the asymmetric shape of the GPD, an AD test with modified
weight function is used (here large weight is given only to
departures in the right tail [see Ahmad et al., 1988]). The
distribution of the AD test statistics has been bootstrapped.
For the thresholds chosen, the test confirms a compatibility
with the GPD distribution at a 5% significance level for all
series of extremes analyzed.
[17] The threshold selection results in rates of extremes

from 8% to 22% of days where rain occurs (in this region we
have about 30% of rainy days on average). An overview of
the percentage and number of extreme values, which result
from the threshold choice, is listed in Table 1. Given the data
and the thresholds used in our application, on average over
all stations about 59% of the local extremes are accompanied
by an extreme event of the NCEP large‐scale variable at the
same day. Extreme event occurrences generated randomly
under similar conditions coincidence for only 7.5% of the
cases (results of this simulation study are not shown). About
96% of the local‐scale extremes occur within the same month
of at least one large‐scale extreme. We consider this relation
as being sufficient to link the CDF of the local‐scale extremes
to the CDF of all large‐scale extremes.

3. XCDF‐t

[18] CDF‐t is an extension of the quantile mapping
approach [see Panofsky and Brier, 1958;Michelangeli et al.,
2009] and belongs to the canon of statistical downscaling
methods. Contrary to most statistical downscaling methods,

the goal here is to downscale a CDF, that is a statistical entity,
and not directly time series of the variable of interest. XCDF‐t
is the adaptation of the CDF‐t approach to the downscaling of
extremes.
[19] Let FYC

be the CDF of observed local data at a site and
for the historical calibration period. Similarly, let FXC

be the
CDF of the large‐scale variable for the same time period and
covering the site’s location, i.e., GCM or, as in our applica-
tion, NCEP reanalysis data. Furthermore, let FYP

and FXP
be

the according CDFs for the projection time period. The goal
of CDF‐t is to retrieve FYP

out of the other three CDFs by
means of a transfer function T (·) : [0, 1] → [0, 1].

FYP xð Þ ¼ T FXP xð Þð Þ ¼ FYC

�
F�1
XC

FXP xð Þð Þ�; ð1Þ

where T (·) is an increasing function. For further details see
Michelangeli et al. [2009].
[20] Here we link the CDFs of extremes, which we model

as threshold excesses. Let FYC
be the CDF of a series of

observed local‐scale threshold excesses YC. Similarly, let XC

and XP be the threshold excesses of the large‐scale series. We
assume that the threshold excesses are distributed according
to a GPD [Embrechts et al., 1997]. Thus FYC

, FXC
, and FXP

have the form of a GPD,

F x;�; �ð Þ ¼ 1� 1þ �x

�

� �� 1=�ð Þ
; ð2Þ

with scale parameter s and shape parameter x. The GPD is
defined on {x : x > 0 and (1 + xx/s) > 0)} with threshold u
and excess x = z − u, where z is the local‐ or large‐scale series.
[21] Let uYC

be the threshold for the local‐scale observa-
tions in the calibration period, and uXC

and uXP
, respectively,

be the thresholds for the large‐scale series in calibration and
projection period. These thresholds may be determined sep-
arately for each series. They have to be sufficiently high, so
that the threshold excesses follow an extreme value distri-
bution [cf., e.g.,Coles, 2001].When applyingXCDF‐t, local‐
scale extremes are inferred from the large‐scale extremes.
Therefore typically a big set of large‐scale extremes is
desirable for the analysis. This has to be considered as well
when choosing the thresholds. The threshold uYP

of the
inferred local‐scale series is deduced from the other three
thresholds; see Appendix A.
[22] In case FYC

, FXC
and FXP

have the same parameter
values, FYP

trivially is a GPD with equal parameter values.
Otherwise FYP

has a more complex structure. Let z be the
large‐scale values in the projection period and x = z − uXP

their
threshold excesses. Then, by concatenating the distributions
FYC

(sYC
, xYC

), FXC
(sXC

, xXC
) and FXP

(sXP
, xXP

) as given in
equation (1), we get

FYP xð Þ ¼ 1� 1þ �YC
�XC

�XC

�YC
1þ �XP

�XP

xþ �ð Þ
� ��XC

�XP �1

2
4

3
5

0
@

1
A

� 1
�YC

� �
;

ð3Þ

which is defined for x > 0, and where � is a correction factor
related to inflation. Indeed, to obtain the whole range of FYP

,
we usually inflate and shift the data before the analysis (see

Table 1. Percentage of Extreme Values (Number of Exceedances)
of Days With Precipitation

Station YC XC XP

Marseille 17.0% (262) 12.7% (475) 13.9% (157)
Perpignan 13.0% (189) 13.8% (475) 22.0% (231)
Mont‐Aigoual 13.3% (342) 7.6% (369) 9.5% (168)
Nîmes 13.7% (222) 10.9% (528) 13.0% (231)
Sète 15.6% (209) 11.5% (396) 7.9% (83)
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Appendix B). Therefore uXC
= uYC

holds, and both terms
cancel each other out in equation (3).
[23] We chose to set xXP

= xXC
and to estimate only sXC

from
the large‐scale series of excesses in the calibration period XP.
In this waymodel complexity is reduced and the inflation step
is not needed. The quotient xXC

/xXP
in equation (3) cancels

out, and finally we use the following relation:

FYP xð Þ ¼ 1� 1þ �YC
�XP

�XC

�YC
xþ �ð Þ

� �� 1
�YC

� �
: ð4Þ

In this way, results get more robust (small estimation devia-
tions for the shape parameters might result in large variability
of this quotient). This procedure is justifiable from a physical
point of view (expected changes of the shape parameter for
the same variable are small), as well as from a technical point
of view (small deviations from the “true” shape parameter xXP

might be compensated by a different scale parameter esti-
mate). Now FYP

is a GPD distribution with scale parameter
sYP

= sYC
(sXP

/sXC
) and shape parameter xYP

= xYC
. Thus, we

expect a similar speed of decay for FYC
(·) and FYP

(·).
[24] Moreover, a GPD with negative shape parameter has

an upper bound [Coles, 2001]. To capture the whole range of
the extremes of YP in any case, we therefore apply XCDF‐t
only to heavy tailed time series, that is, we constrain our
analysis to series whose CDF FYC

, FXC
, and FXP

have a posi-
tive shape parameter. This constraint is in general fulfilled for
streamflow or precipitation data [cf. Reiss and Thomas, 1997;
Katz, 2002; Katz et al., 2002]. However, occasionally nega-
tive shape parameters are estimated for precipitation extremes
[Maraun et al., 2011; Toreti et al., 2010]. This may be, for
example, due to particular geographic conditions, which
inhibit the occurrence of very extreme precipitation events.
Furthermore, a single site assessment in contrast to a multi-
variate, regional analysis might be the reason [Katz et al.,
2002], or an underestimation of heavy precipitation in case
GCM outputs are assessed [Fowler et al., 2010]. In practice,
we first check that all series analyzed have a shape parameter
estimate whose confidence band suggests a compatibility
with the parameter being larger than zero. Then, for the actual
analysis, we set zero as lower bound for the shape parameter
estimation.
[25] The parameters of FYC

, F~X C
, and F~X P

, namely (sYC
,

xYC
), (s ~X C

, x ~X C
) and (s ~X P

), are estimated by maximizing the
likelihood (~XC and ~X P denote the inflated and shifted large‐
scale series; see Appendix B). For estimation, a representa-
tion of the GPD distribution with orthogonal parameters with
respect to the Fisher information matrix is used to get more
stable results, that is, the parameters (v, x) with v = s(1 + x)
[cf. Chavez‐Demoulin and Davison, 2005] are estimated.
Potential covariates are linked to those parameters v and x.

4. Adding Covariate Information

[26] When linking the parameters of FYC
, F~X C

, and F~X P
to

covariates, supplementary information can be added to the
analysis. Time as covariate allows for the modeling of time
dependence of the data. The use of nonstationary extreme
value distributions for climate change studies gets more and
more popular. Fowler et al. [2010], for example, assess the
question when changes in extreme precipitation due to cli-

mate change will be detectable by suiting a nonstationary
extreme value distribution to climate model outputs. Wang
et al. [2004] use a nonstationary extreme value distribution
with covariates to obtain projections for wave heights in the
North Atlantic Ocean. Maraun et al. [2010a] model extreme
daily precipitation in this way. They integrate seasonality
by means of the covariate time, and represent the influence
of atmospheric circulation by the covariates synoptic‐scale
airflow strength, direction and vorticity. Covariates may be
linked to the extreme value distributions by means of para-
metric or nonparametric functions, and these link functions
may be linear or nonlinear. Further details on the GPD with
covariate‐dependent parameters are given, for example, by
Katz [2002], Naveau et al. [2005], andOvereem et al. [2008].
[27] Synoptic‐scale, mesoscale, and local‐scale ingredients

influence the emergence of heavy precipitation. A covariate
represents one or several of those ingredients, and it thus has a
different response at each station. Convection is initiated on
mountain relief shoulders, therefore precipitation amounts are
for example larger in the hill or mountain regions than in the
plain or foothill regions. To account for this, the covariates,
which significantly improve the description of the local‐scale
extremes by means of the statistical model, are selected
separately for each station out of a set of potentially plausible
covariates.
[28] XCDF‐t concatenates GPD distributions as illustrated

in equation (1). The parameters of those distributions FYC
,

F~X C
, and F~X P

may be linked to different covariates or stay
constant. The link functions to the covariates may differ
as well for each parameter.
[29] Let (c1

t ,…, cn
t ) be the state of the n covariates at time

point t in the projection time period. The parameters of F~X P

are linked to these covariate states, so F~X P
(s ~X P

(c1
t ,…, cn

t ),
x ~X P

(c1
t ,…, cn

t )) is directly retrieved. The parameters of FYC
and

F~X C
are estimated by linking the covariate states in the cali-

bration time period. To apply XCDF‐t for time point t in the
projection period, we use quantile mapping [cf. Haddad and
Rosenfeld, 1997] to map the state of the covariates in the
projection period at time point t to the according quantiles
of the covariate distributions in the calibration period. The
resulting covariate states (~c1

t ,…, ~cn
t ) are the states of the

covariates in the calibration period under conditions of
the projection period at time point t. By using the link func-
tions, which have been estimated for the calibration period,
we then obtain FYC

(sYC
(~c1

t ,…, ~cn
t ), xYC

(~c1
t ,…, ~cn

t )) and
~FXC

(s ~X C
(~c1

t ,…, ~cn
t ), x ~X C

(~c1
t ,…, ~cn

t )). XCDF‐t is now applied
for every time step t in the projection period, which results in
a time varying CDF FYP

t .
[30] The covariate concept may be used to include small

and median large‐scale data in the analysis. For some sta-
tions, extreme precipitation might for example not only be
linked to extreme large‐scale precipitation, but as well to less
extreme large‐scale values. In this case, time averaged large‐
scale precipitation can be included as covariate.
[31] We choose a set of potentially meaningful covariates,

out of which then for each station separately suiting covari-
ates are selected. Variables related to pressure are added
to this set. These are common predictors for precipitation,
namely sea level pressure (slp), principal components of
fields of sea level pressure, geopotential height at 850 hPa
(Z850), and principal components of fields of geopotential
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height at 850 hPa. For the region under consideration, heavy
precipitation typically is generated by warm and moist air
from the Mediterranean Sea. This feeds in moisture and heats
the lowest levels of the troposphere through air‐sea sensible
and latent heat fluxes. The more the low‐level jets are per-
pendicular to the mountain range, the higher is the occurrence
of heavy orographic rainfall [cf. Ducrocq et al., 2008].
Therefore, maximum temperature (tmax), and wind velocity
and wind direction at 10 hPa are included in the set of
potential covariates. Furthermore, for most heavy precipita-
tion events a strong synoptic‐scale cyclone is present at upper
levels, typically west of the threat area which generates a
southerly to easterly flow that transports the warm and moist
air masses from the Mediterranean Sea toward the coast and
thus helps to destabilize the air column [Nuissier et al., 2008].
Wind gradients potentially indicate the presence of cyclones.
Therefore the difference of wind direction at 10 hPa and
850 hPa, the difference of wind velocity at 10 hPa and
850 hPa, and the difference of vertical wind intensity at
100 hPa and 850 hPa are included in the analysis. The steep
and particular orography of the Mediterranean region chan-
ges wind directions, it channels the impinging moist and
conditional unstable low‐level flow by inducing upwind low‐
level convergence which contributes to the release of condi-
tional convective instability near the Mediterranean Sea [cf.
Nuissier et al., 2008]. We account for this by adding further
wind variables in the set of covariates, such as wind velocity,
wind direction, and vertical wind intensity at 850 hPa and at
100 hPa. In addition, time and time squared are added to the
set of covariates in case the potential nonstationarity of the
local‐scale extremes is not related to the covariates chosen.
Finally, time averaged large‐scale precipitation (avpr) is
chosen as well as covariate. In this way it is taken into account

that local‐scale heavy precipitation might be linked to aver-
age amounts of rain over the whole region.
[32] Maximum temperature is stemming from the ECA&D

project, whereas all other variables are NCEP reanalysis data.
The gridded data is taken from the grid cell covering the
station location, and it is bilinearly interpolated to this station
location. Time averaged large‐scale precipitation is obtained
by applying a kernel smoother with a bandwidth of 1 month.
The principal components are retrieved out of data fields of
nine grid points surrounding the station location. By using
them, we aim to decrease the noise in the data and therefore
to have a better representation of large‐scale weather patters
[cf. Benestad, 2010; von Storch and Zwiers, 1999]. Wind
velocity and direction are calculated from the east‐west and
north‐south wind components by a transformation into polar
coordinates.
[33] We choose an exponential link function for parameter

v (see section 3),

vt ¼ exp a0 þ a1c
t
1 þ . . .þ anc

t
n

� �
: ð5Þ

Here c1,…, cn are the potential covariates. Different link
functions have been tested. The exponential link function
allows a smooth dependence of v on the covariates. Figures
and numerical results are not shown, but the exponential
link function furthermore revealed to be a good compromise
between an identity link function or using splines (with
exponential or identity link function). The identity link func-
tion shows to be too rigid for the data assessed. Furthermore,
for all stations the exponential link function achieves similar
continuous ranked probability scores (see section 5.3) to the
splines link function. A comparison of the log likelihood of
the fits revealed that the splines link function effectuates an
improvement of the fit for some series. However, this never
justified the increase of model complexity in terms of the
deviance statistics [see Davison, 2003]. As an illustration
scatterplots of the extremes of the observations YC and the
covariate are depicted for station Perpignan in Figure 3. The
scatterplot (grey dots) does not show a complex structure.
The evolution of the GPD parameter v with the covariate is
depicted as black line for the parametric exponential relation
given in equation (5), and as black and grey dashed lines for
modeling this relation by using splines (actually a simple
spline model with one polynomial basis of order three is used
to represent the covariate, i.e., the number of knots is zero,
two additional parameters per covariate have to be used). The
evolution of v is similar for all three link functions depicted.
[34] We furthermore choose to leave all shape parameters

constant. A covariate‐dependent shape parameter xt with
negative and positive states at different time points would
indicate a switch of the extreme value distribution charac-
teristics from having an upper endpoint to allowing infinitely
high extremes [Embrechts et al., 1997]. Themodeling of such
a switch is beyond the scope of the paper.
[35] Before the analysis, all covariates are normalized to

have mean zero and a standard deviation of one. In this way,
the optimization procedure gets more robust. The normali-
zation changes the parameter estimates ai of equation (5),
but does not affect the evolution of vt.
[36] To select covariates, we assess separately for the

local‐scale series in the calibration period and for the large‐
scale series in calibration and projection period whether the

Figure 3. Relation of observation extremes YC to the signif-
icant covariate third PC of slp field (grey dots) for station Per-
pignan. The evolution of the GPD parameter vYC

with the
covariate is shown as black line for an exponential link func-
tion (see equation (5)), as black dashed line for splines with
exponential link function, and as grey dashed line for splines
with identity link function.
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covariates improve the modeling of the extremes. To do so,
the fits of a GPD distribution without covariates and GPD
distributions with all possible combination of covariates are
compared. The deviance statistics [seeDavison, 2003] is used
as model selection criterion.
[37] The principal components of the slp and Z850 fields

comprise information of nine NCEP grid points. Indeed, they
show to be linked more often to the large‐scale extremes than
to the local‐scale extremes. We could not identify covariates
which supply significant additional information for all three
time series YC, XC and XP at a station location. We therefore
chose to link only vYC

to covariates and to leave all other
parameters constant. Often slp and Z850 exhibit a similar
evolution. They seem to be key covariates to accompany
winter precipitation extremes in Southern France, and are
significant covariates for all stations assessed. Z850 and slp
are related to low‐pressure fields, which often accompany
heavy precipitation in the Mediterranean region. Contrary
to our expectations, time averaged NCEP precipitation data
(avpr) does not significantly improve the GPD fit of the
observations, except for station Marseille. However, this
finding supports our assumption of linking the local‐scale
extreme CDF to the large‐scale extreme CDF. Vertical wind
intensity at 850 hPa showed to be a significant covariate
for all stations, but this covariate worsened the verification
results (see section 5.3) a lot. Hence, the link between ver-
tical wind intensity and precipitation extremes is unstable.
Therefore, we dismissed this variable. Wind is a significant
covariate for stations Marseille and Sète, that is wind direc-
tion forMarseille andwind velocity for Sète. Both stations are
situated on the coastline and therefore wind is not hindered or
altered by the topography and may have a strong influence.
[38] All significant covariates used for the further analysis

are listed in Table 2.

5. Results

5.1. Parameter Estimates and Inferred CDF

[39] In Table 3, the GPD scale and shape parameter esti-
mates used for XCDF‐t, are listed together with their 68%
confidence interval (the confidence interval for the scale

parameter is deduced from the parameter vwhich has actually
been estimated, by using the delta method [cf. Coles, 2001]).
The decay rate of the CDF depends on sign and size of the
GPD shape parameter. It determines the frequency of occur-
rence of the most extreme events; therefore the shape param-
eter of the GPD distribution is an interesting feature to look
at. As is apparent in Table 3, the estimated shape parameters
of all series are close to zero. This means, that the CDF of the
input data decay slower than exponentially, but not at a very
slow rate.
[40] To evaluate the results, we first compare the threshold

uYP
determined by XCDF‐t to the threshold obtained when

assuming equal rates of exceedance for the verifications and
for the local series in the calibration period. Here rates of
exceedance for days with precipitation are used, as listed as
percentages in Table 1. Both thresholds are listed in Table 4.
The XCDF‐t approach implies that the local‐scale data
experience the same change between calibration and projec-
tion time period as the large‐scale variable, which determines
the threshold uYP

(see Appendix A). For the data assessed it
shows, that uYP

deduced with XCDF‐t is close to the threshold
obtained when using the verifications. The largest deviance
occurs for Perpignan, where uYP

determined by XCDF‐t is
17% lower. In the further comparison with observations,
we use this threshold uYP

determined by XCDF‐t to identify
the verification extremes.
[41] In Figure 4, the resulting distribution FYP

of the local
extremes for the projection period (1986–1999) is depicted as
black line (here FYP

is obtained without the use of covariate
information). Furthermore, the cumulative distributions of
the verifications (black dots), YC (grey line), XC (grey dashed
line) and XP (black dashed line) are shown. To allow for a
comparison without taking our choice of distribution into
account, the empirical cumulative distribution functions
(ECDF) are shown and not the estimated GPD distributions.
Apparently, the distribution of the large‐scale variable does
not undergo large changes from the calibration to the pro-
jection period. As outlined in Appendix B and illustrated in
Figure 4, that is transferred to the local‐scale variable, which
undergoes as well small changes from the calibration to the

Table 2. Significant Covariate Variables Used for the Analysis

Station Covariates

Marseille time averaged large‐scale precipitation, geopotential
height at 850 hPa, wind direction at 850 hPa

Perpignan third principal component of field of sea level pressure
Mont‐Aigoual maximum temperature, sea level pressure
Nîmes sea level pressure, third principal component of field

of geopotential height
Sète third principal component of field of sea level

pressure, wind velocity at 850 hPa

Table 3. Scale Parameter s and Shape Parameter x Estimates and 68% Confidence Intervals for XCDF‐t Without Covariates

Station sYC
s ~X C

s ~X P
xYC

x ~X C
(x ~X P

)

Marseille 11.60 [10.57, 12.63] 3.82 [3.56, 4.08] 4.32 [3.97, 4.67] 0.008 [0.0, 0.072] 0.022 [0.0, 0.072]
Perpignan 15.42 [13.72, 17.12] 3.35 [3.12, 3.58] 3.22 [2.99, 3.44] 0.159 [0.075, 0.242] 0.085 [0.033, 0.138]
Mont‐Aigoual 34.30 [31.74, 36.86] 3.90 [3.60, 4.20] 3.83 [3.52, 4.14] 0.091 [0.039, 0.142] 0.047 [0.0, 0.103]
Nîmes 13.23 [12.00, 14.47] 3.96 [3.69, 4.23] 3.93 [3.65, 4.22] 0.030 [0.0, 0.095] 0.111 [0.059, 0.163]
Sète 15.87 [14.23, 17.50] 3.58 [3.30, 3.85] 4.19 [3.70, 4.69] 0.144 [0.067, 0.221] 0.088 [0.030, 0.146]

Table 4. Comparison of the Threshold uYP
for the Local‐Scale

Series in the Projection Period Obtained By Means of XCDF‐t
(uYP

(XCDF‐t)) or By Assuming the Same Rate of Excesses for
the Verifications as for the Local‐Scale Series in the Calibration
Period (uYP

(Verifications))

Station uYP
(XCDF‐t) uYP

(Verifications)

Marseille 12.03 11.6
Perpignan 11.97 14.4
Mont‐Aigoual 27.4 29.0
Nîmes 14.52 16.6
Sète 14.6 15.2
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Figure 4. FYP
(black line) and the ECDF of the verifications (black dotted line), YC (grey line), XC (grey

dashed line), and XP (black dashed line) are shown for stations (a) Marseille, (b) Perpignan, (c) Mont‐
Aigoual, (d) Nîmes, and (e) Sète. The x axis is in mm/d; the y axis is probability.

Figure 5. FYP
obtained fromXCDF‐t without covariates (black line), and FYP

t at different time points when
including covariate information (grey lines) are shown for all five stations. For comparison reasons, the
ECDF of the verifications is depicted as well (black dash‐dotted line). The x axis is in mm/d; the y axis
is probability.
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projection period. It gets also apparent, that the forms of
the local‐scale CDF and the large‐scale CDF differ a lot, and
that XCDF‐t well preserves the CDF form of the local‐scale
variable. This demonstrates that XCDF‐t does neither com-
press nor extend the local‐scale series unintentionally. All
in all we find good agreement between the ECDF of the
verifications and FYP

, except for station Sète. At Sète, the
observed precipitation amounts decrease from the calibration
to the projection period. The large‐scale data experience a
directly opposed change, which leads to the discrepancy.
[42] The examination of heavy summer precipitation

did not show as good results (results not presented). In
winter, extremes are in general caused by frontal systems,
thus local‐ and large‐scale precipitation are commonly
strongly related. In summer, however, local extreme events
are often generated by processes on very small scales. Then
it is not so obvious to find a large‐scale predictor, whose
extremes explain the local‐scale extremes. The downscaling
of extreme summer precipitation is still an open research
challenge [Maraun et al., 2010b]. The Mediterranean sum-
mer is anyway characterized by high temperatures, long
periods of droughts and rather a lack of precipitation than
extreme precipitation.
[43] To assess the surplus value of covariate information,

we compare the FYP
’s with the ECDF of the verifications.

In Figure 5, the FYP
obtained from XCDF‐t without covariate

information (black line) and the FYP

t ’s obtained with XCDF‐t
using covariate information at each time point t where a
verification exceeds the threshold uYP

(grey lines) are shown.
The ECDF of the verifications is added as black dash‐dotted
line. The differences between the FYP

obtained without cov-
ariate information and the ECDF of the verifications may
be due to a nonstationary evolution of the observations, which
can be captured by use of covariate information. Indeed,
for all stations the area spanned by the grey lines covers
the ECDF of the verifications completely. This hints to an
improvement of the results when using covariate information.

5.2. Statistical Characteristics of the Inferred CDF FYP

[44] We assess the decay of the CDFFYP
by fitting a GPD to

realizations of FYP
and by interpreting the shape parameter

estimate (cf. equation (4)). In Table 5, the median and the
68% confidence interval of the distributions of the shape
parameter xYP

are listed. These distributions are obtained from
a GPD fitted to YP series of length 2000, which are generated
from bootstrapped FYP

to capture the whole bandwidth of xYP

(for details, see Appendix C1). In case covariate information
is incorporated, we use the CDFs FYP

t of the time points t
when a verification exceeds the threshold uYP

. For each time
point we generate 30 series, which results in about 2400 to
5000 shape parameter values. In Table 5 the shape parameter
estimates of the verification extremes and the YC series are
listed as well for comparison reasons. The shape parameters
of FYP

and the verification extremes should lie close by. This
is the case for stations Perpignan, Nîmes and Sète, where the
shape parameter of the verification extremes is included in the
confidence interval of the FYP

obtained without covariate
information. The difference of the shape parameter estimates
is with 0.137 the largest for station Marseille, for the other
stations the difference is much smaller and does not exceed
0.083. When including covariate information, the inferred
shape parameter xYP

is closer to the shape parameter estimate
of the verifications for stationsMont‐Aigual, Nîmes and Sète.

Table 5. Shape Parameter Estimates x and 68% Confidence Intervals for Series YP Obtained With and Without Covariate Informationa

Station YP (no cov) YP (cov) Verifications YC

Marseille 0.014 [0.0, 0.066] 0.009 [0.0, 0.050] 0.151 [0.009, 0.292] 0.008 [0.0, 0.072]
Perpignan 0.145 [0.057, 0.239] 0.058 [0.001, 0.146] 0.196 [0.084, 0.308] 0.159 [0.075, 0.242]
Mont‐Aigoual 0.083 [0.021, 0.148] 0.026 [0.0, 0.086] 0.0 [−0.002, 0.002] 0.091 [0.039, 0.142]
Nîmes 0.025 [0.0, 0.094] 0.009 [0.0, 0.055] 0.0 [−0.001, 0.001] 0.030 [0.0, 0.095]
Sète 0.132 [0.045, 0.220] 0.046 [0.0, 0.127] 0.068 [−0.063, 0.199] 0.144 [0.067, 0.221]

aAlso given are the shape parameter estimates for a GPD fit to the verification extremes and the local‐scale data in the calibration period YC.

Table 6. Percentage of Verifications Which Exceed the Lower
95% Body of FYP

a

Station FYP
(no cov) FYP

(cov)

Marseille 6.5 7.8
Perpignan 6.9 4.6
Mont‐Aigoual 5.4 7.8
Nîmes 3.4 6.9
Sète 1.1 4.3

aValues closest to 5% are boldface.

Figure 6. Lower 95% body of FYP
obtained without covari-

ates (below black line) and with covariate information at
each time point where a verification exceeds the threshold
uYP

(grey area) for station Mont‐Aigoual. The verification
extremes are depicted as black dots.
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[45] By means of a simulation study, we furthermore test
whether applying XCDF‐t results in biased shape parameters.
For this study we set the projection period equal to the cali-
bration period 1951–1985 and apply the XCDF‐t. Then the
shape parameter of the verifications, YC in this case, is com-
pared to the distribution of shape parameters of YP series. For
all stations but for Perpignan it shows here, that the shape
parameter of the verifications does well lie within the distri-
bution of the inferred shape parameter xYP

. We thus conclude
that XCDF‐t does not bias the decay behavior of the CDF.
Results of this test are not shown.
[46] The 95% quantile is also an interesting statistical

characteristics of a CDF. In Table 6, the percentages of
verification extremes, which exceed this quantile of FYP

(or
CDFs FYP

t in case covariate information is used), are listed.
The percentages should lie close to 5%, which indeed is the
case for most stations. In Figure 6, the 95% quantile of FYP

,
obtainedwithout covariate information, is exemplarily shown
for station Mont‐Aigual (black line). The 95% body of the
FYP

t with covariate information (grey area) is depicted for all
time points t when a verification (black dots) exceeds the
threshold uYP

. The covariate information apparently helps
to capture some of the most extreme verifications. This
improvement, however, is canceled out by the large fluc-
tuation of the 95% quantile of the FYP

t , which leads to the
omission of other verification extremes and therefore to the
similar results listed in Table 6. All in all it shows that cov-
ariate information has to be introduced with care.

5.3. Verification

[47] The q‐q plots are useful to compare the complete
distributions. In Figure 7, q‐q plots for the ECDF of the
verifications and FYP

obtained without covariate information
are depicted (grey dots). The labels of the axes include the
quantile order of the thresholds (with respect to days with
precipitation) to illustrate the extremity of the threshold
excess series. Local‐scale series YP in the projection period
can be determined by quantile mapping XP between the
large‐scale CDF FXP

and the inferred local‐scale CDF FYP
[cf.

Michelangeli et al., 2009]. In Figure 7, q‐q plots between the
ECDF of the in this manner determined local series YP and the
verifications are shown as black dots for XCDF‐t without
covariate information and as black crosses for XCDF‐t with
covariate information (here the local‐scale CDF FYP

t is used
for quantile mapping at each time point where a large‐scale

Figure 7. The q‐q plots for FYP
without covariates (x axis) and ECDF of verifications (y axis) are shown

(grey dots) for the stations (a) Marseille, (b) Perpignan, (c) Mont‐Aigoual, (d) Nîmes, and (e) Sète. In addi-
tion, q‐q plots for the ECDF of YP (obtained by quantile mapping XP between FYC

and the inferred FYP
) are

depicted for XCDF‐t without covariate information (black dots) and with covariate information (black
crosses).

Table 7. CRPS Values, Averaged Over All Time Points Where
Verification Excesses are Availablea

Station FYP
(no cov) FYP

(cov)

Marseille 7.26 7.07
Perpignan 10.29 10.02
Mont‐Aigoual 20.78 19.66
Nîmes 7.95 8.02
Sète 8.22 9.11

aBoldfaced values indicate a better score result.

KALLACHE ET AL.: PROBABILISTIC DOWNSCALING OF EXTREMES D05113D05113

10 of 15



extreme occurs). The standard q‐q plots (grey dots) show a
good agreement between the verifications and our model
for stations Marseille (Figure 7a), Mont‐Aigual (Figure 7c),
and Nîmes (Figure 7d). For the other two stations, the prob-
ability of occurrence of the most extreme extremes is either
underestimated or overestimated. We furthermore remark a
proximity of the results of the standard q‐q plots, where FYP

itself is used, and those of the ECDF of the YP series, which
has been obtained by quantile mapping FYP

, see grey and
black dots. For most of the stations, the ECDF of the series
YP is even closer to the ECDF of the extreme verifications.
When comparing the results obtained with and without cov-
ariate information (black dots and crosses), we find a clear
improvement of the results for stations Marseille (Figure 7a)
and Sète (e) when covariate information is included. For all
other stations the inclusion of covariate information leads to a
degradation of results. This is probably due to the temporal
variability of the covariates, which do not entirely suit the
local‐scale data. The results might be improved by con-
sidering further covariates such as vorticity or humidity.
Furthermore, transformed covariates may be of use, where
lagged covariate information is taken into account, or cov-
ariate information is aggregated over several days. However,
these extensions are beyond the scope of this paper.
[48] As further verification criterion, the continuous ranked

probability score (crps) is employed. The crps integrates the
quadratic distance of FYP

to the verification over all quantiles
and corresponds therefore to the integral of the Brier score
over all thresholds. The better (i.e., the closer to zero) the crps,

the closer the verification is to the center of FYP
. It is best in

case of a perfect deterministic forecast, where an infinitely
narrow distribution around the verifying observation has
been achieved [cf. Gneiting and Raftery, 2007]. We integrate
piecewise to approximate the crps, as, for example, proposed
by Hersbach [2000]. In Table 7 the score results, aver-
aged over the verification period, are listed. The inclusion of
covariate information slightly improves the crps for stations
Marseille, Perpignan, andMont‐Aigoual. This finding differs
from the q‐q plot results, because the crps aggregates infor-
mation from the whole distribution.

5.4. Comparison With Other Approaches

[49] In Figure 8, q‐q plots for XCDF‐t (black dots, no
covariate information used), the classical nonparametric
CDF‐t approach [cf. Michelangeli et al., 2009] (grey dots),
and quantile mapping [Panofsky and Brier, 1958] (grey
crosses) are depicted. The two latter approaches are applied as
well to the series of threshold excesses. The changes between
calibration and verification period are small in our verifica-
tion study (see Figure 4). This is advantageous for quantile
mapping, because here the changes between FXC

and FXP
are

not considered. In Figure 8 an improvement gets visible for
stations Marseille (Figure 8a), and Mont‐Aigual (Figure 8c)
when applying XCDF‐t, that is when modeling extreme
values with a suitable GPD distribution. All methods have
difficulties with the data of station Sète (Figure 8e), but results
worsen when using XCDF‐t (this would not be the case if

Figure 8. The q‐q plots for verification extremes and XCDF‐t without covariate information (black dots,
corresponding to the grey dots in Figure 7), the classic nonparametric CDF‐t approach (grey dots) and
quantile mapping (grey crosses) for stations(a) Marseille, (b) Perpignan, (c) Mont‐Aigoual, (d) Nîmes, and
(e) Sète.
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covariate information was used (see Figure 7)). For the other
two stations, results are on a par.

6. Summary and Conclusion

[50] In this paper we present a downscaling approach,
which links the CDF of large‐scale extremes to the CDF of
local‐scale extremes by means of a transfer function. This
link is assumed to stay stable between calibration and pre-
diction period. XCDF‐t does not require a realistic day‐to‐
day representation of the large‐scale variable and may be
classified as model output statistics downscaling method.
Only in the case that covariates are used for the modeling
of the local‐scale extremes, the realistic simulation of these
covariates has to be verified. As result XCDF‐t supplies the
CDF of the local‐scale extreme values in the projection time
period FYP

. FYP
is obtained in parametric form, thus series

distributed according to FYP
can be generated. However, the

chronology of the inferred local‐scale extremes in the pro-
jection period has to be derived separately, as presented, for
example, by Benestad [2010].
[51] We assess daily precipitation in winter in Southern

France for the calibration period 1951 to 1985 and the veri-
fication period 1986 to 1999. NCEP precipitation is used as
large‐scale variable. The results are verified by means of the
95% quantile, q‐q plots, and the continuous ranked proba-
bility score. The verification extremes represent on aver-
age over all stations the upper 15% of the data at days with
precipitation. It shows that an acceptable representation of
extreme precipitation of Marseille, Nî, and Mont‐Aigoual is
obtained. Those stations are subject to very different geo-
graphic conditions: Marseille is situated on the coastline, here
the moisture supply of the sea is important. Nîmes is located
on the foothills of the Massif Central, and Mont‐Aigoual on
one of its hilltops. For the latter two stations, the interplay of
specific synoptic‐scale conditions with the local topography
is relevant for the creation of heavy precipitation events [cf.
Berne et al., 2009; Boudevillain et al., 2009]. Thus it appears
to be feasible, even under very different geographic condi-
tions, to deduce the CDF of local‐scale precipitation extremes
from the CDF of large‐scale extremes.
[52] The q‐q plots reveal a good estimation of the

whole distribution of local‐scale extremes for station Mont‐
Aigoual. The emergence of local extreme precipitation at this
station is clearly linked to extreme precipitation within the
region. For station Séte the occurrence of heavy precipitation
is overestimated. This may be caused by the fact that Séte
is located in the middle of several geographical spheres. The
link between local‐scale and large‐scale extreme precipi-
tation may differ according to the respectively dominating
sphere. This is not captured by our model. For stations
Perpignan, Marseille and Nîmes, the q‐q plots reveal an
underestimation of the most extreme events Here apparently
further influences besides large‐scale extreme precipita-
tion are important for the emergence of local‐scale extreme
precipitation.
[53] Additional information may be added to XCDF‐t in

form of covariates of the parameters of the ingoing extreme
value distributions. The covariates and their link functions are
selected by means of the deviance statistics out of a set of
appropriate covariates. A covariate typically represents one or
more influences at synoptic scale or mesoscale, and thus has

different local responses. Therefore distinct significant cov-
ariates may be chosen for each station. In our analysis, sea
level pressure showed to be the most useful covariate for the
downscaling of winter precipitation in Southern France,
whereas time averaged large‐scale precipitation was only
significant for station Marseille. The results show, that cov-
ariates might improve results. For most stations, XCDF‐t
with covariate information improved the representation of the
most extreme verifications. The careful selection of covari-
ates and their links to the GPD parameters are yet crucial.
[54] The inclusion of covariate information improves the

results for Marseille, but not for Nîmes. Wind direction is a
significant covariate forMarseille. Marseille is situated on the
coastline, so here wind is indeed another strong influence for
the emergence of extreme precipitation. For Nîmes, variables
related to a synoptic depression are significant, that is slp and
Z850. For this region, heavy precipitation is often accom-
panied by a cyclone, but its intensity does not play a major
role [Nuissier et al., 2008]. This may be the reason why the
occurrence of heavy precipitation is overestimated when
including those pressure related variables in the assessment of
Nîmes. Furthermore, the local interaction between topogra-
phy and synoptic flow forces and focuses the convection in
the areas of Nîmes, Mont‐Aigual and (to a lesser extend)
Perpignan. Here it is not straightforward to establish a link
between large‐scale precursors and local‐scale heavy pre-
cipitation [Nuissier et al., 2008], which reduces the applica-
bility of covariates in this context.
[55] An improvement of the covariates choice may be

achieved by selecting them by means of score results for a
verification period. To do so, the verification period must
have a representative length. Furthermore, the construction of
more complex covariates might be meaningful in order to
account for further influencing factors on the emergence of
heavy precipitation. These could be, for example, the per-
sistence of a synoptic depression or the duration of vertical
wind intensity. In the end, the determination of adequate
covariates and according link functions gets very close to the
modeling of physical processes.
[56] In comparison with the classical nonparametric CDF‐t

approach and quantile mapping, XCDF‐t has worse results
for station Sète, is on a par for stations Perpignan and Nîmes,
and improves results for stations Marseille and Mont‐Aigual.
[57] Altogether XCDF‐t shows good verification results,

also in comparison with the other approaches. The combi-
nation of EVT with a downscaling framework is a promising
path and XCDF‐t can be a useful tool in local impact studies.
The R software package CDFt will be extended to contain the
routines presented in this paper.
[58] Other than many classical statistical downscaling

methods, the CDF‐t and XCDF‐t methods can be directly
calibrated on large‐scale GCM outputs, when no covariates
are used. GCM simulations may be biased even at large
scales. The GCM simulations for the 20th and 21th century
for example do not represent the real temporal evolution of
the large‐scale weather states in the past [Maraun et al.,
2010b]. However, if the bias of the GCM outputs stays the
same in calibration and prediction period, then GCM outputs
may replace the reanalysis data as large‐scale variable in both
periods when applying XCDF‐t without covariates. In this
way IPCC SRES scenario simulations [IPCC, 2000] may be
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used to generate local projections by means of XCDF‐t
without covariates.
[59] In case covariate information is used on the local‐scale

CDF, XCDF‐t has to be calibrated on reanalysis data. The
appropriateness of the in this manner calibrated framework
has to be verified when being applied to GCM data. This
implies that the covariates have to be realistically simulated
by the GCM, also the chronology of the covariates. Then
the GCM outputs can be downscaled with the inclusion of
covariate information. In most of the cases observations or
reanalysis data are needed to achieve realistically simulated
GCM covariates, the GCM covariates may for example be
nudged toward observations. Therefore XCDF‐t with cov-
ariate information may rather be applied to downscale GCM
outputs for feasibility studies, which is along the lines of,
for example, work by Widmann and Bretherton [2000].
[60] For settings where the GPD distribution is not appro-

priate, CDF‐t with and without covariates may be applied by
using other distributions.
[61] Another potential application of the methodology is

projection in space: Information at several sites may be
combined to generate “regional” CDFs FYC

, FXC
, FXP

in order
to infer observations at a neighboring site, where no obser-
vations have been recorded.

Appendix A: Derivation of Threshold uYP
of the

Local‐Scale Variable in the Projection Period

[62] F~X C

−1(F~X P
(u~X P

)) = u~X C
holds. For l = 1, ~X P and ~XC

are shifted but not inflated. Then � is zero (cf. equation (B4)),
and equation (B5) becomes for x = u~X P

: FYP
(u~X P

) = FYC
(u~X C

).
Because of the shifting u~X C

= uYC
holds, therefore FYP

(u~X P
) =

0. Thus, uYP
is determined as uYP

= u~X P
= uYC

+ (uXP
− uXC

).
Hence the change D between calibration and projection
time series is the same for local‐ and large‐scale series: D =
(uYP

− uYC
) = (u~X P

− u~X C
). When the large‐scale series

have been inflated, the subtraction of the inflation correction
factor � leads to

uYP ¼ uYC þ u~XP
� u~XC

� �
� �

¼ uYC þ uXP � uXCð Þ; ðA1Þ

and thus the threshold of the not inflated series is restored.

Appendix B: Data Preprocessing: Inflation
and Shifting

[63] We inflate and shift the large‐scale series, so that YC
and XC have approximately the same range before applying
XCDF‐t. Otherwise, the edges of the CDF FYP

may not be
obtained. An alternative way to tackle this problem is, for
example, to use shifted edges of the CDF FYC

to complete FYP

[Déqué, 2007]. However, by the here proposed inflation and
shifting, the fully parametric form of FYP

is maintained, which
can be used to generate new series (see Appendix C). In
addition, this preprocessing helps to avoid unwanted com-
pression or extension of FYP

with respect to FYC
when

applying XCDF‐t, which might otherwise occur due to the
unboundedness of the upper tail of a GPDwith positive shape
parameter. Inflation is not necessary in case we constrain the
procedure so that the inferred CDF FYP

is also a GPD (see
equation (4)).

[64] Let the inflation factor be l with

� ¼ max YCð Þ � uYC
max XC � uXC þ uYCð Þ � uYC

: ðB1Þ

The inflated series are furthermore shifted, so that local‐ and
large‐scale series have the same threshold in the calibration
period. Thus we obtain

~XC ¼ �� XC þ uYC � �� uXCð Þ;
~XP ¼ �� XP þ uYC � �� uXCð Þ;
u~XC

¼ �� uXC þ uYC � �� uXCð Þ ¼ uYC ;

u~XP
¼ �� uXP þ uYC � �� uXCð Þ:

ðB2Þ

Now XCDF‐t is given by

FYP xð Þ ¼ FYC F�1
~XC

F~XP
xð Þ

� �� �
: ðB3Þ

Inflating and shifting change the XCDF‐t transfer function
T (·). However, the effect of inflation on the resulting CDFFYP

is very small, this has been tested by means of simulation
studies (results not shown). In case local‐ and large‐scale
variables have approximately the same range, the effect of
inflation gets negligible.
[65] When applying XCDF‐t, the change between cali-

bration and projection time period for the local‐scale CDF is
deduced from the change D the large‐scale CDF has expe-
rienced. We therefore use variables with the same units, so
even the quantity of the transferred change is interpretable. To
maintain this feature in case of inflation, we readjust by using
the thresholds: Without inflation, local‐ and large‐scale var-
iable thresholds would experience the same change between
calibration and projection period, that isD = uXP

− uXC
= uYP

−
uYC

(see Appendix A). Inflation causes a change ~D = l × D.
To correct for this, we subtract the correction factor

� ¼ �� 1ð Þ
�

u~XP
� u~XC

� �
¼ �� 1ð ÞD ðB4Þ

from uYP
and all quantiles of FYP

, and equation (B3) becomes

FYP xð Þ ¼ FYC F�1
~XC

F~XP
xþ �ð Þ

� �� �
: ðB5Þ

This equation is finally used to deduce equation (3).

Appendix C: Generation of Realizations of FYP

[66] Let x be distributed according to FYP
, then FYP

(x) = u
(with u being uniformly distributed). Thus realizations of FYP

are generated by transforming equation (B5) to

x ¼ F�1
~XP

F~XC
F�1
YC

uð Þ
� �� �

� �: ðC1Þ

[67] To account for parameter estimation uncertainty,
the following bootstrap procedure is applied to generate
series YP:
[68] 1. Estimate parameters for FYC

, F~X C
, and F~X P

from the
data and obtain FYP

by means of XCDF‐t. Then simulate a
series YP from FYP

.
[69] 2. Generate new series Y*C, ~X*

C, and ~X*
P from FYC

, F~X C
,

and F~X P
. From these series, estimate parameters for F*YC

,

KALLACHE ET AL.: PROBABILISTIC DOWNSCALING OF EXTREMES D05113D05113

13 of 15



F*~X C
, and F*~X P

, and obtain F*YP
by applying XCDF‐t.

Then simulate a series Y*P from F*YP
. Repeat this step R times,

e.g., R = 1000.
[70] The Y*P are used to create confidence bands for YP

itself or for characteristics of YP.
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