

Laboratoire des Sciences du Climat et de l'Environnement

Is there an optimal timing for sequestration to stabilize future climate?

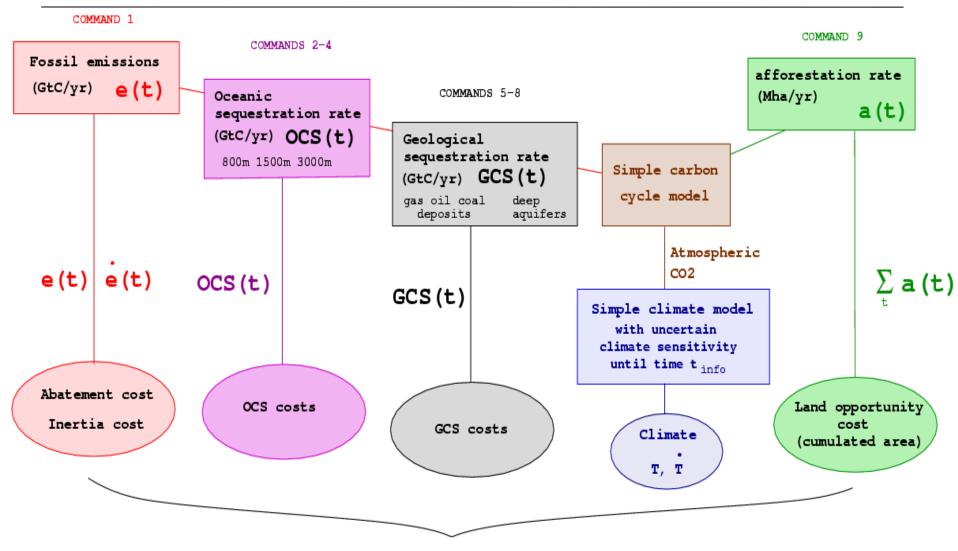
Vincent GITZ (in collaboration with Philippe AMBROSI and Philippe CIAIS)

Sept. 26, 2008. PARIS

A mitigation portfolio to stabilise climate under uncertainty

Four mitigation options, with **very different costs** and **mitigation potentials**, **timescales** and **environmental concerns**:

- emissions reductions
- biological carbon sequestration (BCS)
- **carbon capture and storage** in **geological** formations (GCS)
- carbon capture and storage in oceanic reservoirs (OCS)


A mitigation portfolio to stabilise climate under uncertainty : questions asked

- 1. Role and importance of sequestration versus emission reductions in stabilizing climate (both at short and longer term): <u>Can we really **"buy time" through sequestration** ?</u>
 - delay abatement efforts, amounts of C?
 - contribution to lower overall climate policy costs?
- 2. Are seq. options competitive or do they complement each other?
- **3.** Existence of unaccounted drawbacks to scenarios that include massive resort to carbon sequestration (role of leakage and climate sensitivity)?
- 4. Do uncertainties about future climate sensitivity matter in choosing seq. options? How portfolios are suited to anticipate :
 - uncertainties about climate sensitivity,
 - future emission trajectories (high CO2 scenarios)?

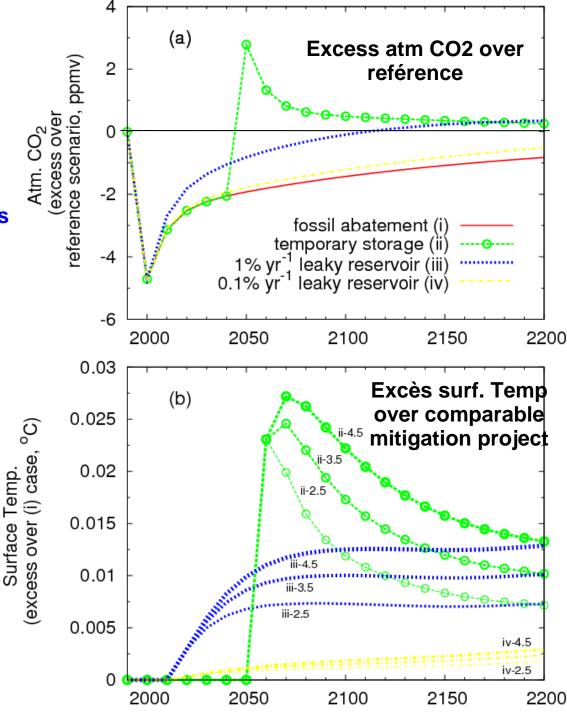
Outline

- A compact, integrated, parameter-scarce, climate policy optimisation model: Response-sq.
- Physical effects of storage on atmospheric CO2 and temperature.
- Least-cost stabilization policies with and without sequestration portfolio: the role of sequestration in climate policies.

RESPONSE – An optimal control integrated assessment model

Total expected cost is minimized to meet climatic constraints (do not exceed T max and T max)

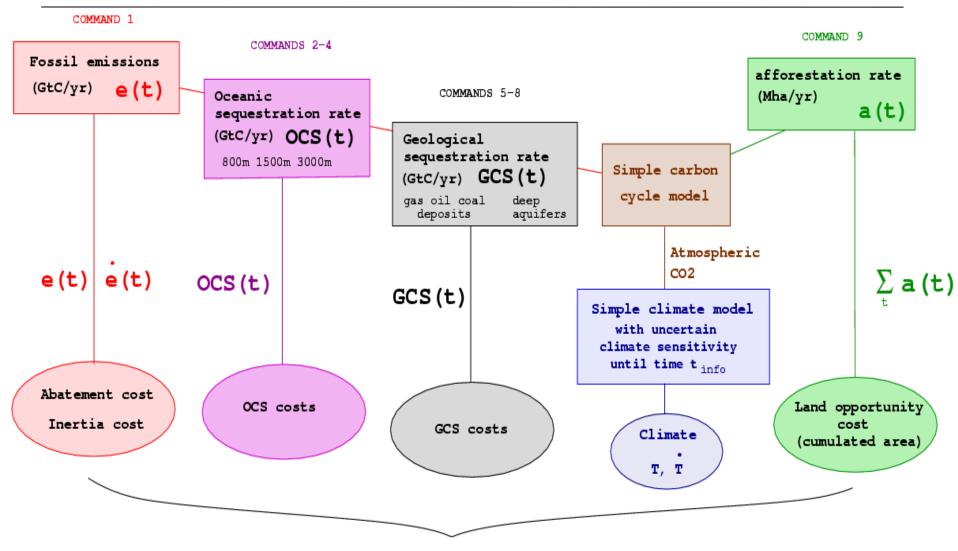
Climatic effects of 10GtC projects


>> MITIGATION >> BIOLOGICAL SEQUESTRATION for 50 years >> OCEANIC SEQUESTRATION With 0.1%/yr and 1%/yr leakage rates

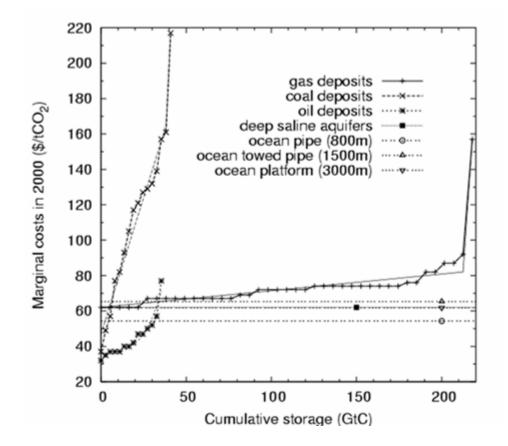
Even weak leakage question the use of CCS

>> CCS might be useless ... In scenarios In which we would need it the most (high climate sensitivity, high emissions)

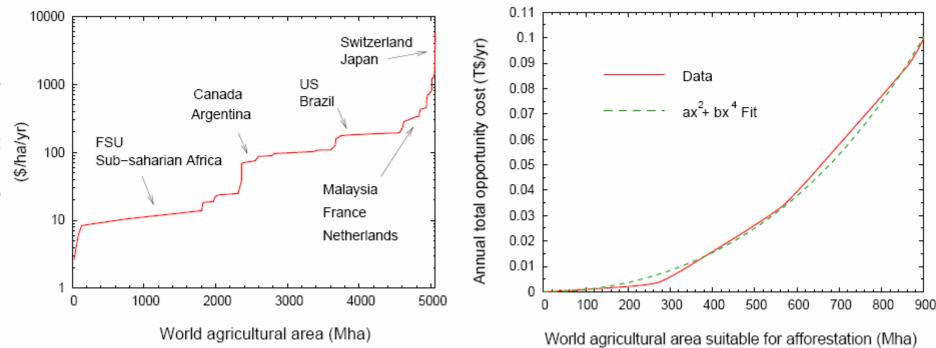
High climate sensitivity penalizes the use of leaky sequestration


>> the orientation of the technological portfolio is not independent of climatic parameters

Drawbacks?

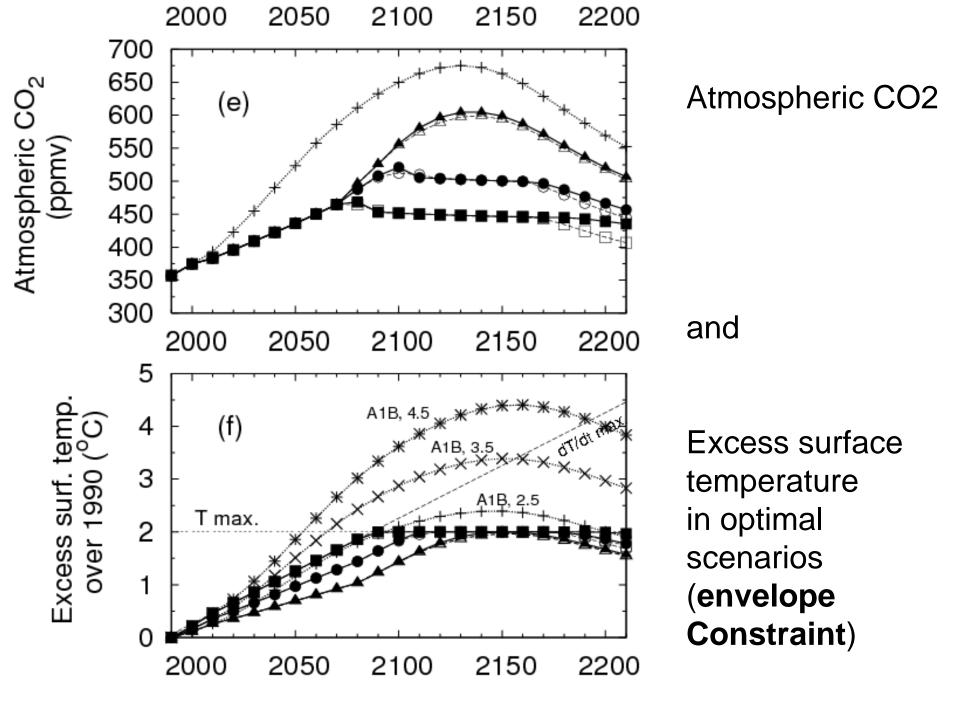

- Because of delayed effects, a lower value might be attached to sequestration measures if they are leaky.
- The magnitude of this discount will be higher if climate sensibility happens to be high.
- Do these implications automatically preclude the use of sequestration policies? let's see...

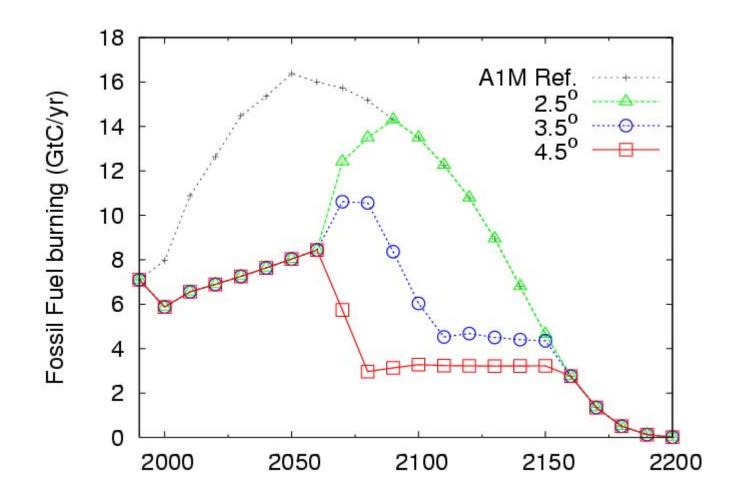
RESPONSE – An optimal control integrated assessment model

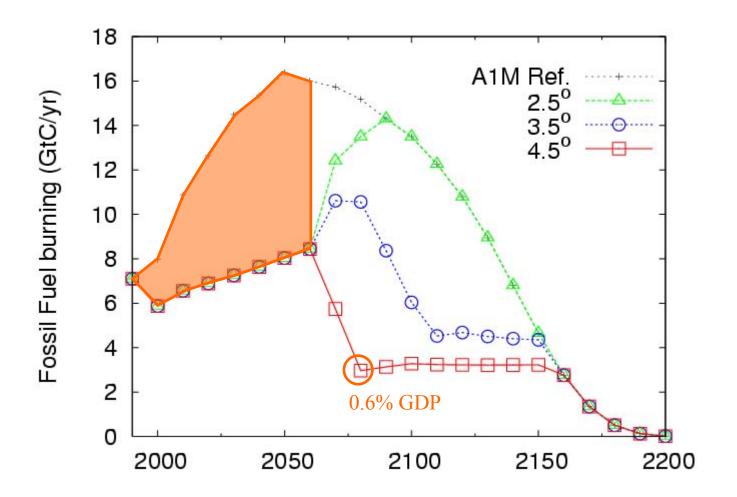

Total expected cost is minimized to meet climatic constraints (do not exceed T max and T max)

CC&S cost curves

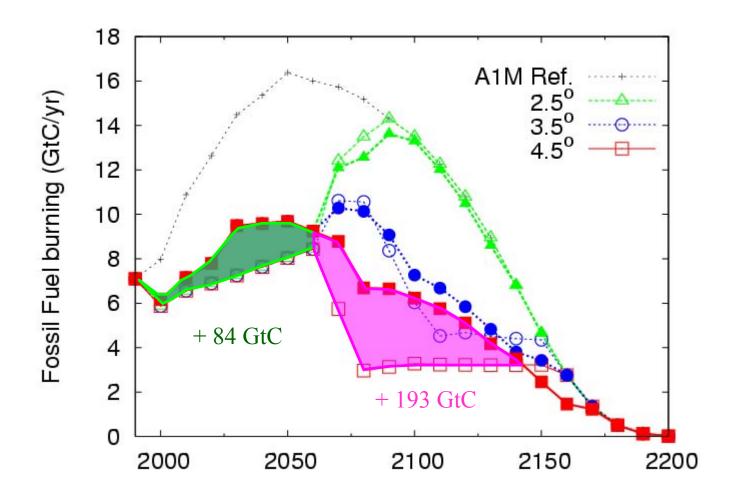
maximum potential of reservoirs (except the ocean): ~ 1 400 GtC

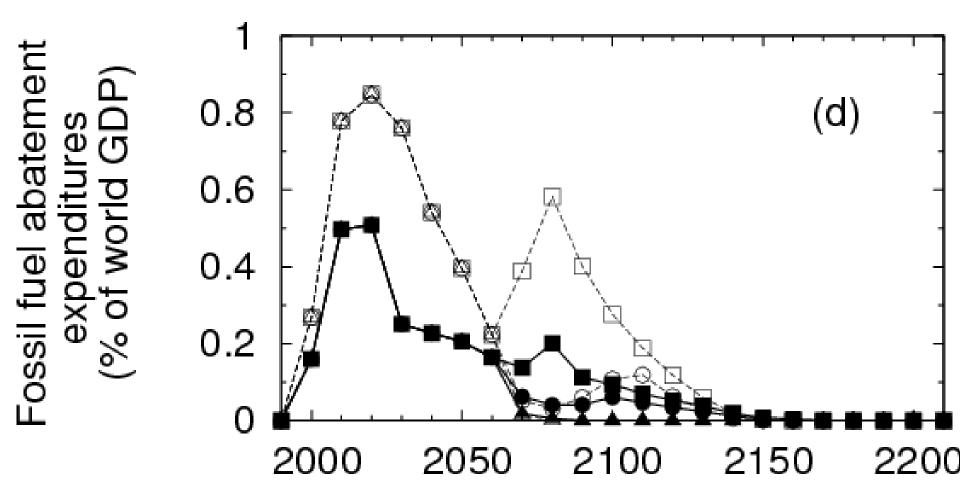

Opportunity cost of immobilizing lands (base year 1997)




Source: FAO 1997 for agricultural area per country

GTAP 1997 for annual net agricultural revenue per country land-cover maps by Ramankutty and Foley for areas suitable for afforestation


- average Carbon gained afforested over 50 years: 0.1 GtC/Mha
- maximum potential of BCS reservoir: 100 GtC



42% of baseline emissions

BCS: a **brake** on emissions G&OCS: a **safety valve** on emissions

Reduction of fossil fuel abatement expenditures Due to sequestration options

A2		Cumulative C fluxes (GtC)			Economic Cost (T\$)	
		REF	Abatement	Seq. Policy	Abatement	Seq. policy
			only		only	
	ST	1043	578	682	4.45	2.13
Fossil fuels	LT 2.5	5146	1975	2358	0.35	0.30
IUCIS	LT 4.5	5140	797	1812	1.95	0.62
	ST			-55		0.29
BCS	LT 2.5			41		0.05
	LT 4.5			43		0.07
GCS	ST			-30		0.30
	LT 2.5			-85		0.00
	LT 4.5			-991		0.10
	ST			-19 (0)		0.10
OCS	LT 2.5			-1097 (670)		0.06
	LT 4.5			-616 (452)		0.48
	ST	1043	578	578	4.45	2.82
NET	LT 2.5	5146	1975	1888	0.35	0.41
	LT 4.5		797	700	1.95	1.28

		Cumulative C fluxes (GtC)			Economic Cost (T\$)	
	A2		Abatement	Seq. Policy	Abatement	Seq. policy
			only		only	
Fossil	ST	1043	578	682	4.45	2.13
fuels	LT 2.5	5146	1975	2358	0.35	0.30
emiss.	LT 4.5	5140	797	1812	1.95	0.62
	ST			-55		0.29
BCS	LT 2.5			41		0.05
	LT 4.5			43		0.07
	ST			-30		0.30
GCS	LT 2.5			-85		0.00
	LT 4.5			-991		0.10
OCS	ST			-19 (0)		0.10
	LT 2.5			-1097 (670)		0.06
	LT 4.5			-616 (452)		0.48
	ST	1043	578	578	4.45	2.82
NET	LT 2.5	5146	1975	1888	0.35	0.41
	LT 4.5		797	700	1.95	1.28

A2		Cumulative C fluxes (GtC)			Economic Cost (T\$)	
		REF	Abatement	Seq. Policy	Abatement	Seq. policy
			only		only	
Faasil	ST	1043	578	682	4.45	2.13
Fossil fuels	LT 2.5	5146	1975	2358	0.35	0.30
TUEIS	LT 4.5	5140	797	1812	1.95	0.62
	ST			-55		0.29
BCS	LT 2.5			41		0.05
	LT 4.5			43		0.07
	ST			-30		0.30
GCS	LT 2.5			-85		0.00
	LT 4.5			-991		0.10
	ST			-19 (0)		0.10
OCS	LT 2.5			-1097 (670)		0.06
	LT 4.5			-616 (452)		0.48
	ST	1043	578	578	4.45	2.82
NET	LT 2.5	E140	1975	1888	0.35	0.41
	LT 4.5	5146	797	700	1.95	1.28

		Cumulative C fluxes (GtC)			Economic Cost (T\$)	
	A2		Abatement	Seq. Policy	Abatement	Seq. policy
			only		only	
	ST	1043	578	682	4.45	2.13
Fossil fuels	LT 2.5	5146	1975	2358	0.35	0.30
10013	LT 4.5	5140	797	1812	1.95	0.62
	ST			-55		0.29
BCS	LT 2.5			41		0.05
	LT 4.5			43		0.07
	ST			-30		0.30
GCS	LT 2.5			-85		0.00
	LT 4.5			-991		0.10
	ST			-19 (0)		0.10
OCS	LT 2.5			-1097 (670)		0.06
	LT 4.5			-616 (452)		0.48
NET	ST	1043	578	578	4.45	2.82
	LT 2.5	5146	1975	1888	0.35	0.41
	LT 4.5	5146	797	700	1.95	1.28

Leakage tends to penalise OCS

Future (irreversible) leakage has to be compensated by **additional mitigation efforts**

\Box	a	bias	in	favour	of	GCS
--------	---	------	----	--------	----	-----

High climate sensitivity case	Low-emissions scenario (A1)	High-emissions scenario (A2)
OCS (GtC)	308	616
G&OCS (GtC)	338	1664
Share of OCS in G&OCS (%)	52	37
Cumulative leakage (GtC)	211	406

Conclusion

- Sequestration options can help to cut down costs as a substitute to abatement : up to 35%
- Complementarity of BCS (short-term) and G&OCS (long-term)
- **Rate of deployment** of these options proves **binding**
- Leakage from the ocean (not to speak of local risks of OCS) penalises ocean sequestration; OCS may not be compatible with high emissions scenarios and high climate sensitivity
- Climate-carbon feedbaks imply additional necessary reduction in emissions of 10% to 15%