Addressing scarcity and conflict over water resources in SW Burkina Faso

C. Roncoli, B. Dowd-Uribe, B. Orlove, M. Sanon, L. Some, J. Sanfo, J. Zoungrana, P. Kirshen, D. Etkin, G. Hoogenboom

Center for Research on Environmental Decisions EARTH INSTITUTE | COLUMBIA UNIVERSITY

METEO-BURKIN

Introduction

- A case study of water resource management in a context characterized by climate uncertainty, resource scarcity, and user conflict
- The participatory development of a decision support tool meant to facilitate consensual management of water resources
- The evolving context of water governance in which information is introduced and used in negotiating water management decisions

- A **case study** of water resource management in a context characterized by climate uncertainty, resource scarcity, and user conflict
- The participatory development of a decision support tool meant to facilitate consensual management of water resources
- The evolving context of water governance in which information is introduced and used in negotiating water management decisions

- A case study of water resource management in a context characterized by climate uncertainty, resource scarcity, and user conflict
- The participatory development of a **decision support tool** meant to facilitate consensual management of water resources
- The evolving context of water governance in which information is introduced and used in negotiating water management decisions

- A **case study** of water resource management in a context characterized by climate uncertainty, resource scarcity, and user conflict
- The participatory development of a decision support tool meant to facilitate consensual management of water resources
- The evolving context of water governance in which information is introduced and used in negotiating water management decisions

Introduction

Two contrasting models:

Predict-and-then -act model requires that climate uncertainties be reduced, quantified, and correctly communicated

Policy and institutional adaptations support decision-makers' ability to engage uncertainty and respond to variable conditions

Lemos & Rood, WIREs Climate Change, v.1 (5) 2010

Two contrasting models:

Predict-and-then -act model requires that climate uncertainties be reduced, quantified, and correctly communicated

Policy and institutional adaptations support decision-makers' ability to engage uncertainty and respond to variable conditions

Lemos & Rood, WIREs Climate Change, v.1 (5) 2010

Two contrasting models:

Predict-and-then -act model requires that climate uncertainties be reduced, quantified, and correctly communicated

Policy and institutional adaptations support decision-makers' ability to engage uncertainty and respond to variable conditions

Lemos & Rood, WIREs Climate Change, v.1 (5) 2010

Dealing with climate uncertainty:

A different way of coping with uncertainty with estimates of future climate change is to adopt management measures that are **robust to uncertainty**

Integrated water resource management (GIRE) is based on the concept of flexibility and adaptability, using measures which can be altered and are robust to changing conditions

IPCC AR4 WG4, 3.6.5

Dealing with water scarcity:

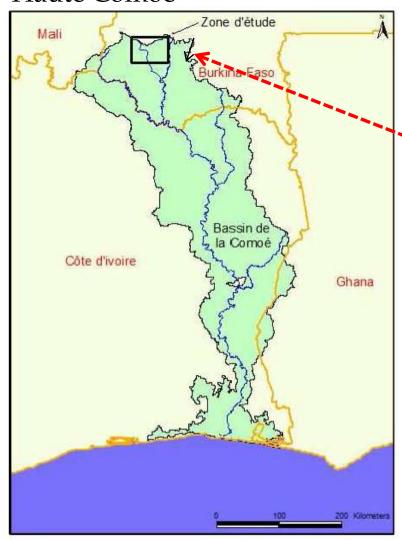
If climate change results in greater water scarcity, adaptation may include **technical changes** that improve water-use efficiency, demand management..., and **institutional changes**

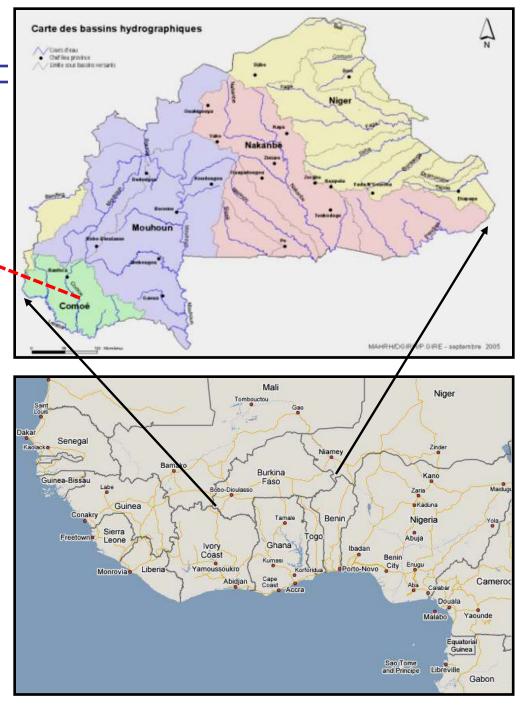
The institutions that govern water allocation will play a large role in determining the overall social impacts of change in water availability as well as the **distribution of gains and losses** across different sectors of society

IPCC AR4 WG4, 3.5.1

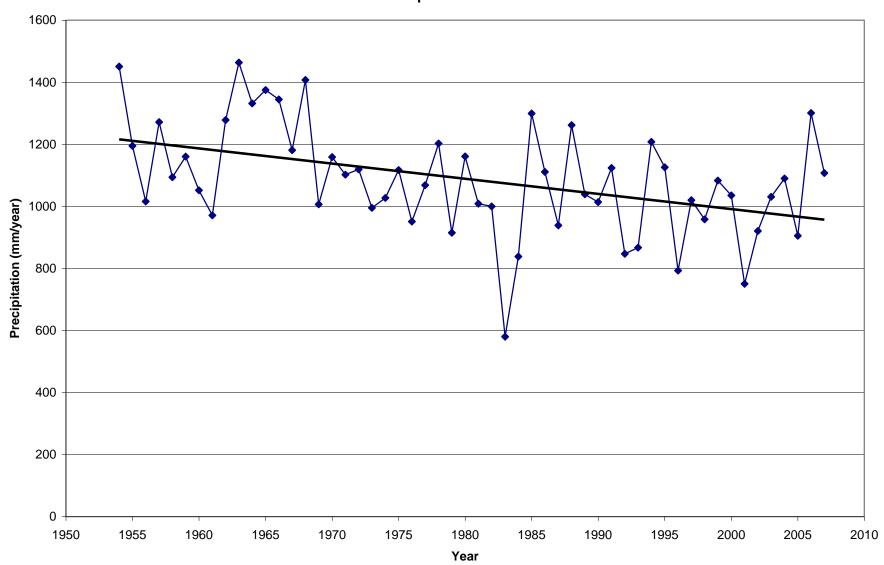
- A **case study** of water resource management in a context characterized by climate uncertainty, resource scarcity, and user conflict
- The participatory development of a decision support tool meant to facilitate consensual management of water resources
- The evolving context of water governance in which information is introduced and used in negotiating water management decisions

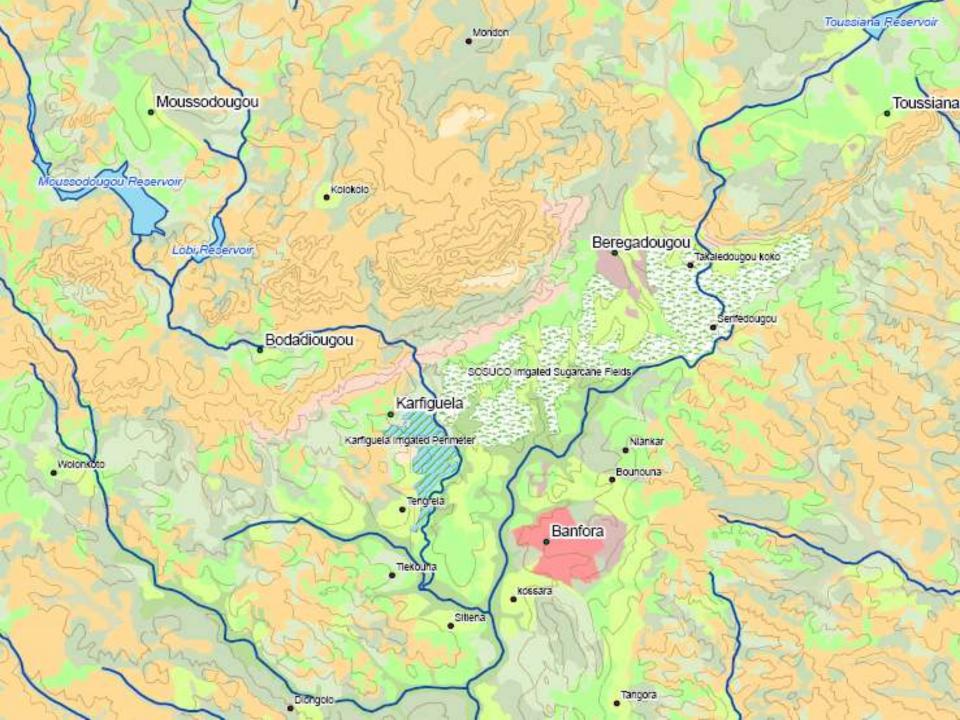
Case Study

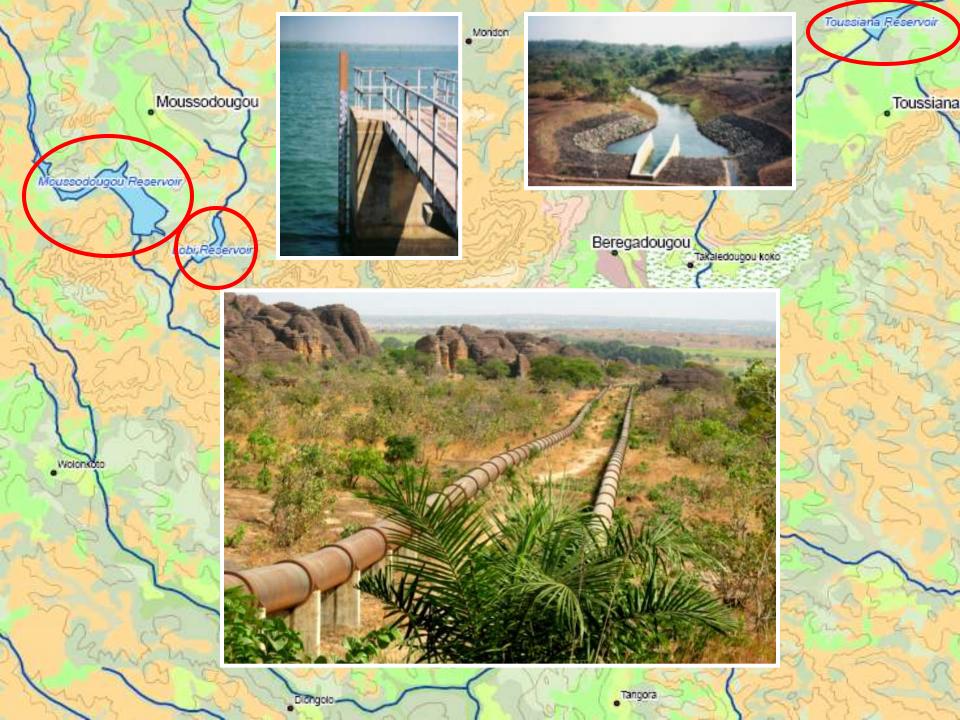


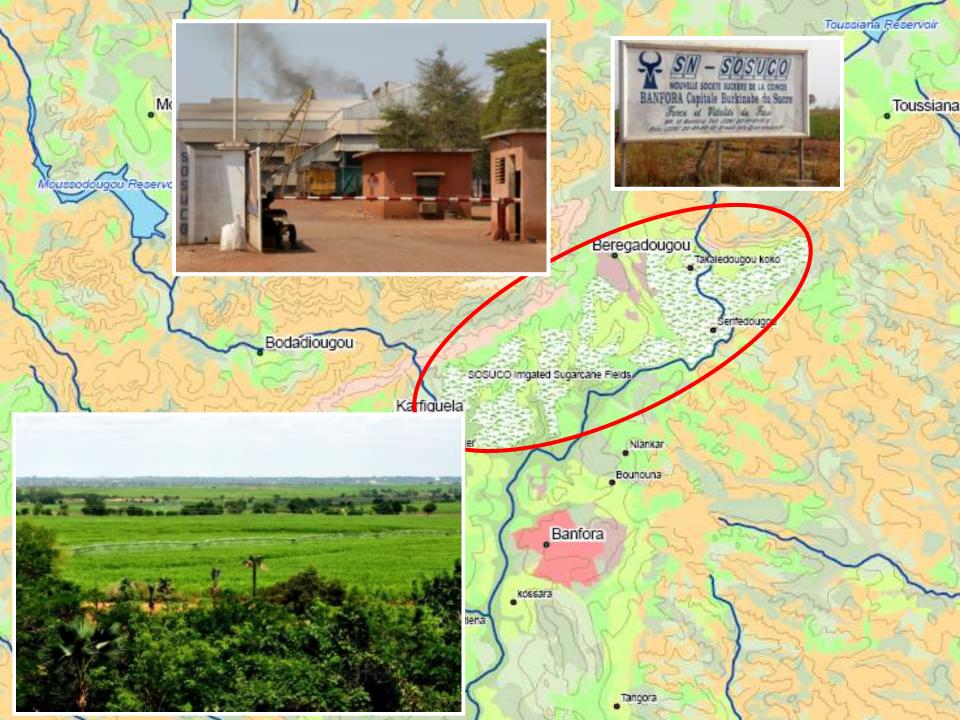


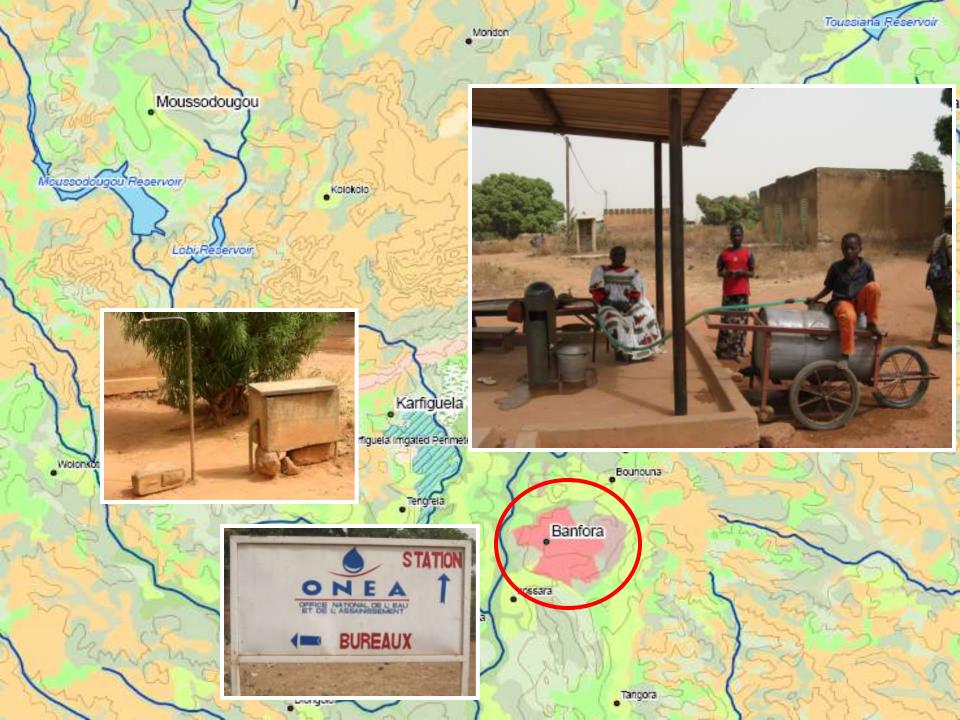
Case Study - Site

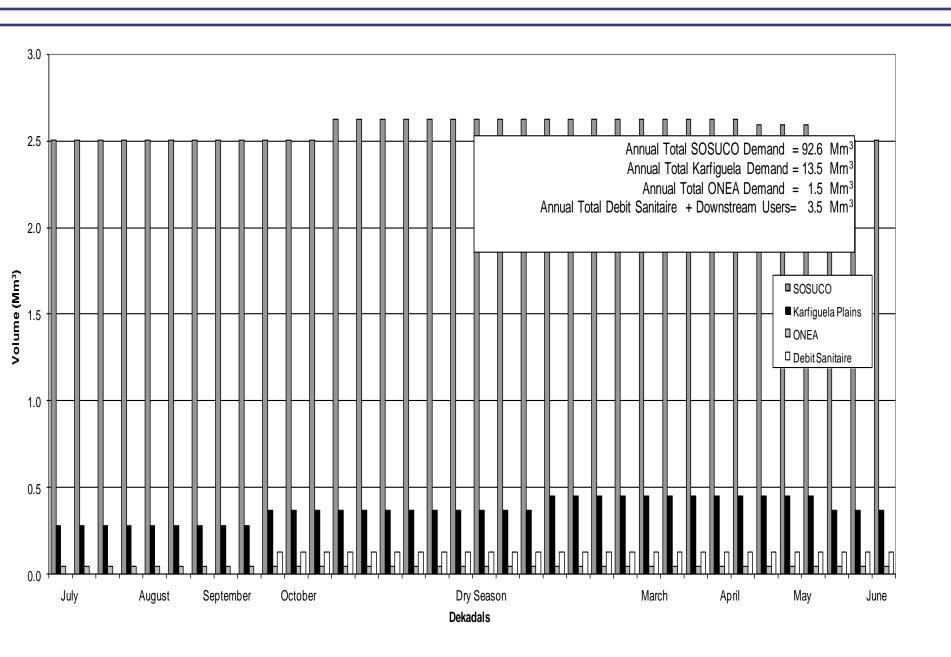

Haute Comoe'






Case Study - Climate Variability and Change

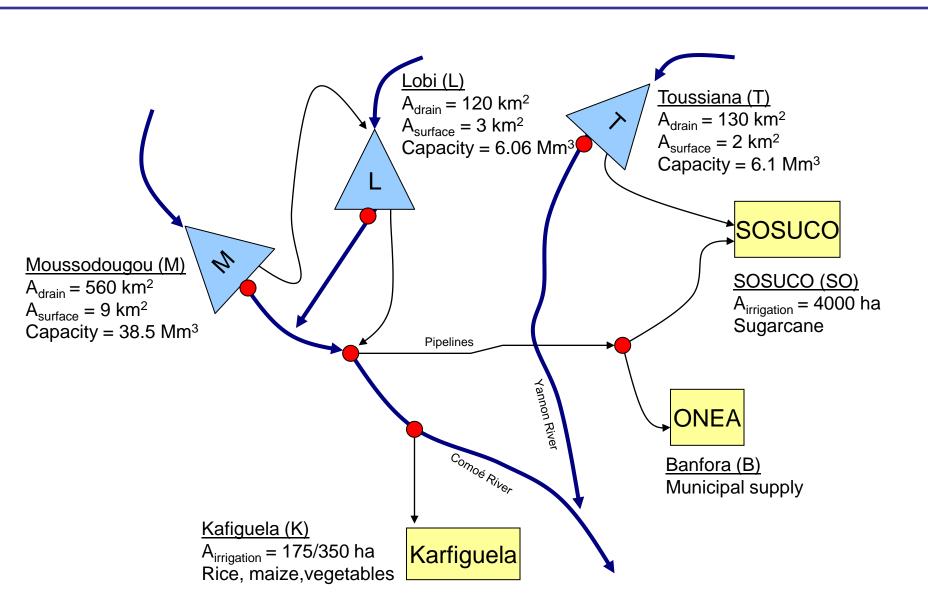


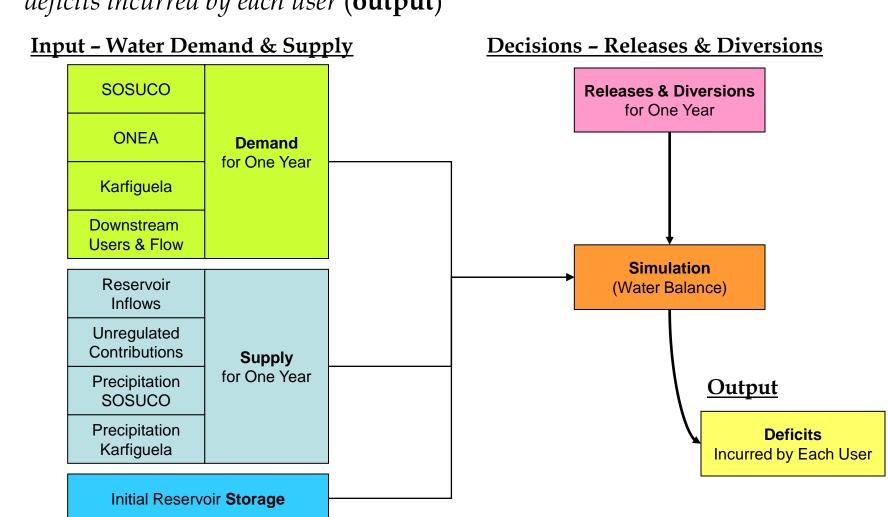


Case Study - Unequal User Demands

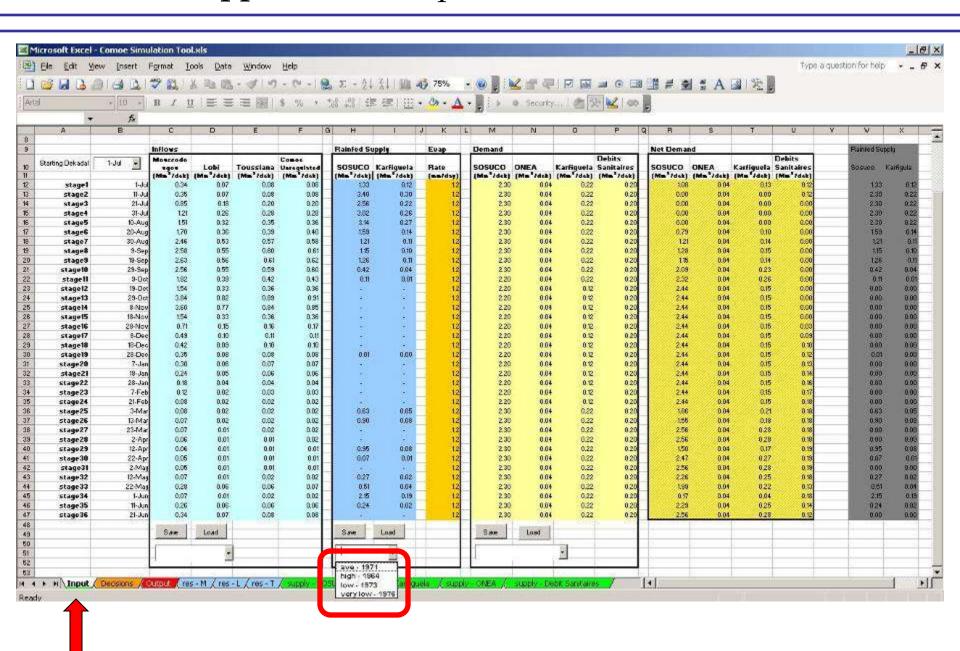
- A case study of water resource management in a context characterized by climate uncertainty, resource scarcity, and user conflict
- The participatory development of a **decision support tool** meant to facilitate consensual management of water resources
- The evolving water governance context in which information is introduced and used and water management decisions are negotiated

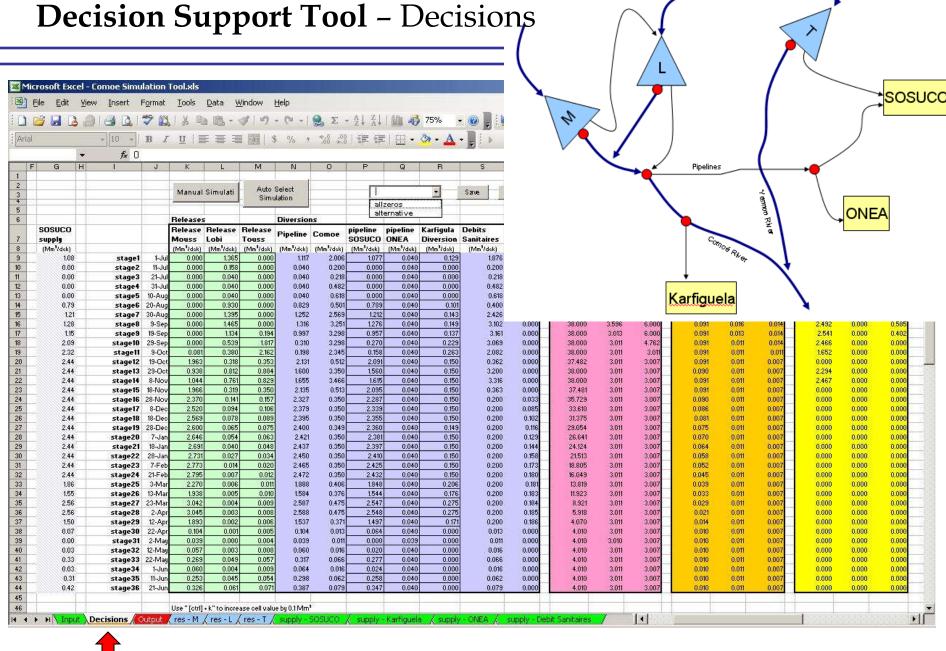
Decision Support Tool





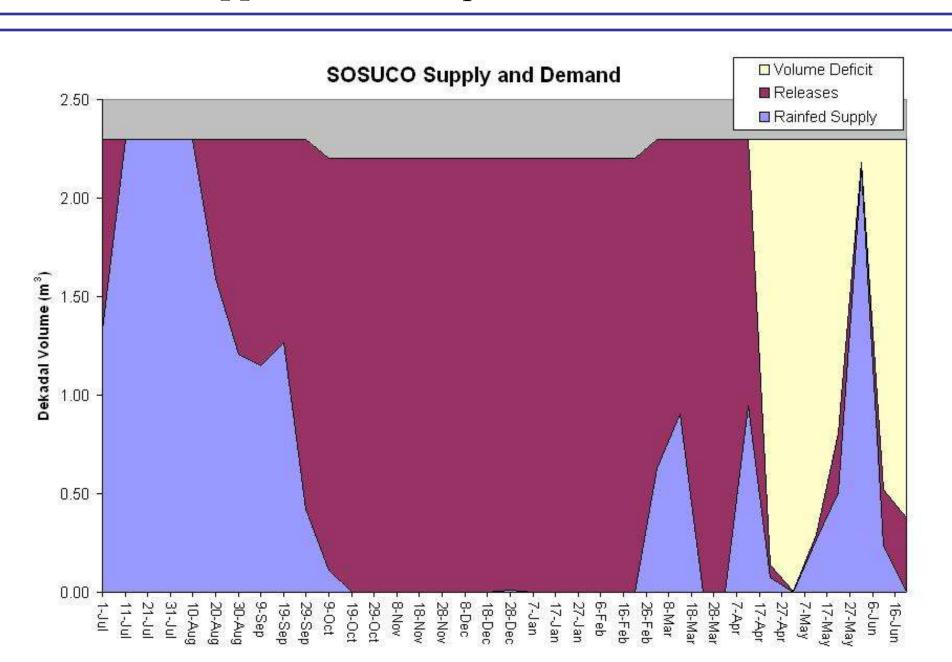
Decision Support Tool - Network Schematic

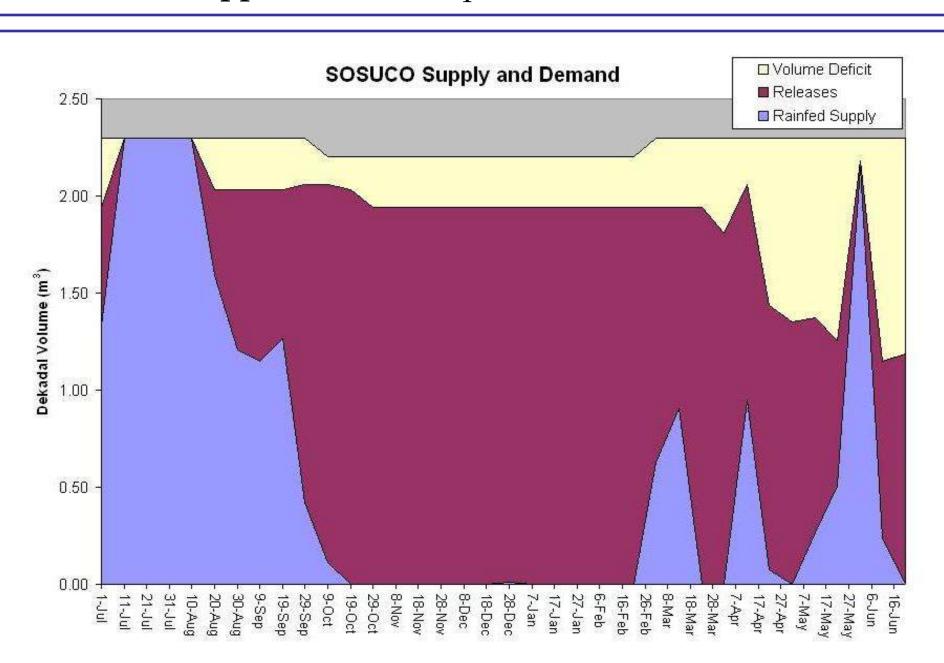


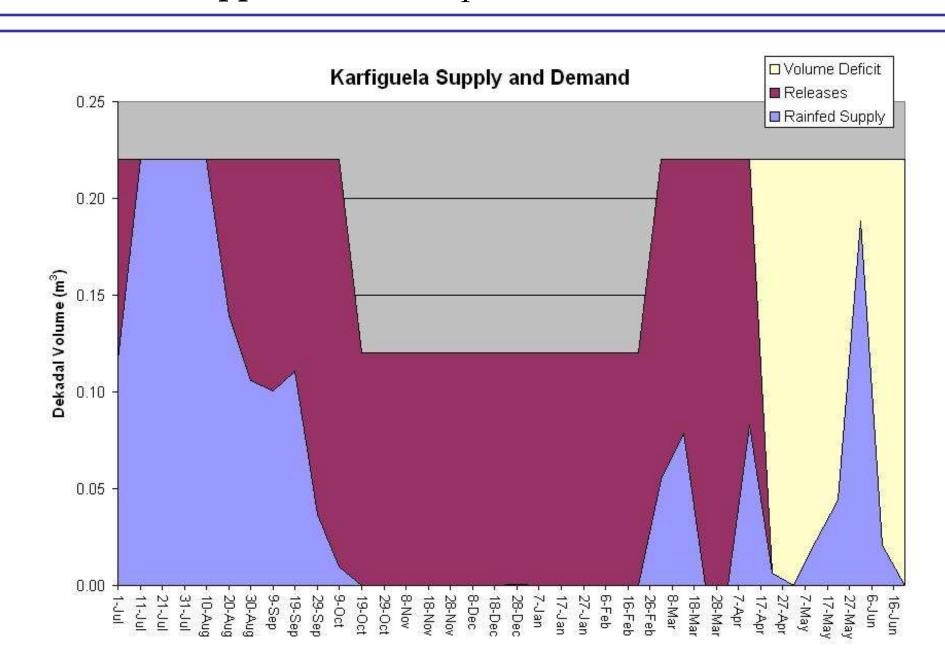

Decision Support Tool - Structure

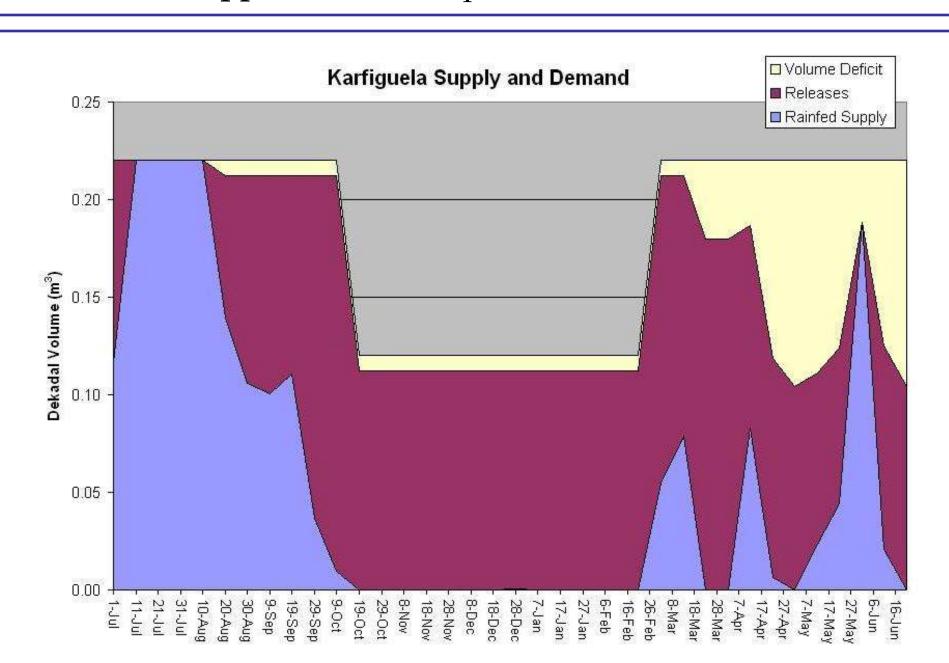
Given certain *climate and hydrological conditions* (**input**), the tool simulates the impact of *different management decisions* (**decisions**) in terms of *deficits incurred by each user* (**output**)

Decision Support Tool - Input





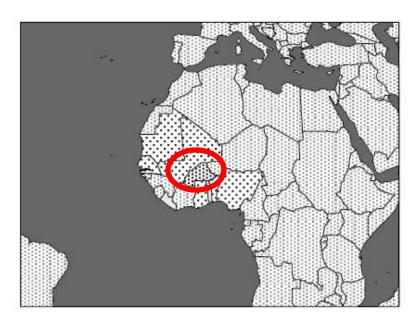



1	File Edit	<u>V</u> iew	/ Insert F	ormat	<u>T</u> ools	Data V	Vindow	<u>H</u> elp													Type a quest	tion for he	dp + _
		-6	1001	 	T V B	nda .	- P (1995	Per Cit	0 -	AIZI	1 data in	L 700/		2 an E	1 EZ EU	- 0				III 45			
		000000											200						7 (28)	V. E			
ia	U.		- 10 -	$\mathbf{B} = I$	ū ≣		1 2 3	% 1	€.0 .0 			(h) - A	· >	Securit	y 🚵 📡		10						
		+	£ 0										Janes			- Option	360						
	F G	н	į.	J	K	L	M	N	0	P	Q	R	S	T	U V	V	X	Y Z	AA	AB .	AC AD	AE	AF
								- 4	~								I I						
					Manual	Simulati		Belect	()	$-\pi$		•	Save	Load	-			1			4		
					_		Simu	lation		all	zeros												
5					Releases			Diversion	200	alt	ernative				Storage			Evaporation	125		Spills		
-	sosuco					Release	Release			pipeline	pipeline	Karfigula	Debits	DS -	Moussado			Moussado			Moussado		$\overline{}$
	supply				THE STREET PARTY OF THE	Lobi	Touss	Pipeline	Comoe	SOSUCO		Diversion	Sanitaires	Release	agos	Lobi	Toussiana	ugou .	Lobi	Toussiana	ugou	Lobi	Toussiana
	(Mm³/dek)			- 4	(Mm³/dek)	(Mm³/dek)	(Mm³/dek)	(Mm³/dek)		(Mm³/dek)	(Mm³/dek)	(Mm³/dek)	(Mm³/dek)	(Mm³/dek)	(Mm³)	(Mm³)	(Mm³)	(Mm³/dek)	(Mm³/dek)		(Mm³/dek)	(Mm³/dek)	(Mm³/dek)
1	1.08	\rightarrow	stage1	1-Jul	0.000	1.365		1.117	2.006	1.077	0.040		1.876	60 00001780	32.268	6.000	0.000	0.077	0.032		0,000	1.676	3.058
0	0.00		stage2 stage3	11-Jul 21-Jul	0.000	0.158	0.000	0.040		0.000	0.040	200000	0.200 0.218	200	32.539 33.313	5.895 6.000	200000000000000000000000000000000000000	0.077 0.078	0.022		0.000	0.000	0.066 0.184
2	0.00	-	stage4	31-Jul	0.000	0.040	0.000	0.040	0000000	0.000	0.040	232000	0.482	9A AYSSEISIS	34,442	6.000	1,000,000,000	0.080	0.022		0.000	0.197	0.266
3	0.00		stage5	10-Aug	0.000	0.040		0.040	0.618	0.000	0.040		0.618	0.000	35,869	6.000	6.000	0.083	0.022	0.014	0.000	0.262	0.336
4	0.79	×	stage6		0.000	0.930	0.000	0.829		0.789	0.040	7.21323	0.400		37,479	5.412	100.0500	0.086	0.022		0.000	0.000	0.379
5 6	1.21 1.28		stage7 stage8	30-Aug 9-Sep	0.000	1,395 1,465		1.252 1.316	2,569 3,25	1.212	0.040		2.426 3.102		38.000 38.000	4.524 3.596	0000000	0.090	0.019	1277233	1.847 2.492	0.000	0.556 0.585
7	1.15		stageo stage9		0.000	1.134	0.000	0.997	3,298	0.957	0.040	150000	3,102	0.0000000	38,000	3.013	20055577	0.031	0.010	220730770	2.541	0.000	0.989
8	2.09		stage10		0.000	0.539	1.817	0.310	3.298	0.270	0.040		3,069		38.000	3.011	7,000,000	0.091	0.011	2000000	2.466	0.000	0.000
9	2.32		stage11	9-Oct	0.081	0.380	2.162	0.198		0.158	0.040		2.082		38,000	3,011		0.091	0.011	79555733	1.652	0.000	0.000
20	2.44 2.44		stage12		1.963 0.938	0.318		2.131		2,091 1,560	0.040		0,362 3,200		37,482	3.011 3.011		0.091	0.011		0.000	0.000	0.000
22	2.44		stage13 stage14	entirely by a family and the	1.044	0.812	0.884	1.600 1.655	3,466		0.040		3,200	5.5 Table 5.5 (a)	38,000 38,000	3,011	01/02/309(30)	0.090	0.011	DK3 (36)	2.294 2.467	0.000	0.000
3	2.44	-+-	stage15	commence of more production in particular	1.966	0.319		2.135		2.095	0.040		0.363		37.481	3.011	000000000	0.091	0.011	25.55	0.000	0.000	0.000
4	2.44		stage16		2.370	0.141		2.327	0.350	2.287	0.040		0.200	100000000000000000000000000000000000000	35.729	3.011		0.090	0.011	2000000	0.000	0.000	0.000
25	2.44	-	stage17		2.520	0.094	0.106	2.379		2.339	0.040	510000	0.200		33,610	3.011		0.086	0.011		0,000	0.000	0.000
7	2.44 2.44		stage18 stage19		2,569 2,600	0.078 0.065	0.089	2.395 2.400		2.355 2.360	0.040		0.200 0.200		31.375 29.054	3,011 3,011		0.081 0.075	0.011		0.000	0.000	0.000
8	2.44		stage20	7-Jan	2.646	0.054	0.063	2.421		2.381	0.040		0.200		26.641	3.011		0.070	0.01		0.000	0.000	0.000
9	2.44		stage21	18-Jan	2.691	0.040	-515.03	2.437	0.350	2.397	0.040	201730	0.200	0.144	24.124	3.011	3,007	0.064	0.011	0.007	0.000	0,000	0.000
30	2.44		stage22	many products from the	2.731	0.027	377555	2,450		2.410	0.040		0.200		21,513	3,011	0123556	0.058	0.011	8700376	0,000	0.000	0.000
31	2.44		stage23 stage24	7-Feb	2.773 2.795	0.014	0.020	2.465 2.472	0.350 0.350	2,425	0.040		0.200 0.200	0.173 0.180	18.805 16.049	3,011	305057222	0.052 0.045	0.011	2777.0	0.000	0.000	0.000
3	1.86	-i-	stage25	military to the property	2.270	0.007	0.012	1.888	0.300	1.848	0.040		0.200		13.819	3.011	100000000000000000000000000000000000000	0.039	0.011	577.773	0.000	0.000	0.000
4	1.55		stage26	13-Mar	1.938	0.005	0.010	1.584	0.376	1.544	0.040	0.176	0.200	0.183	11.923	3.011	3.007	0.033	0.011	0.007	0.000	0.000	0.000
5	2.56	-	stage27	edical agricult descripts (reties	3.042	0.004	0.009	2.587	0.475	2.547	0.040		0.200	24 22374	8.921	3,011	10000000000000	0.029	0.011	275 00 10	0.000	0.000	0.000
7		-	stage28 stage29	2-Apr 12-Apr	3.045 1.893	0.003	0.008	2.588 1.537	0.475	2.548	0.040	0.0001.00	0,200 0,200	11 E 11	5.918 4.070	3.011	708 LST (4)	0.021 0.014	0.011	900000	0.000	0.000	0.000
8	0.07	\rightarrow	stage29 stage30		0.104	0.002	0.006	0.104	0.37	0.064	0.040		0.200	M	4.010	3,011	57 57 33 31 32	0.014	0.01	10000000	0.000	0.000	0.000
9	0.00		stage31	the Charleston of State	0.039	0.000	0.004	0.039		0.000	0.039	0.000	0.011		4.010	3.010		0.010	0.011		0.000	0.000	0.000
0	0.03		stage32		0.057	0.003	0.008	0.060		0.020	0.040		0.016		4.010	3.011		0.010	0.011		0.000	0.000	0.000
1	0.33	-	stage33		0.269 0.060	0.049	0.057	0.317 0.064	0.066	0.277	0.040		0.066 0.016	0.000	4.010 4.010	3.011 3.011	1605280940	0.010	0.011	2000000	0.000	0.000	0.000
3	0.03		stage34 stage35	1-Jun 11-Jun	0.060	0.004	2000	0.064	0.016	0.024	0.040	F.0.5.5.4	0.016	C 000000000000000000000000000000000000	4.010	3,011	500000000	0.010	0.011	100000	0.000	0.000	0.000
4	0.42		stage36	and the second section of	0.326	0.061	0.071	0.230	0.079		0.040	232300	0.079	(4) ACCOMMONS	4.010	3.011	1000000000	0.010	0.01	273333	0.000	0.000	0.000
5			270					7	11-											- 11			
				1	of objected stops in the both	my by contribution of the contribution	ase cell valu	Commence of the Addison Advantage of		supply -							14						

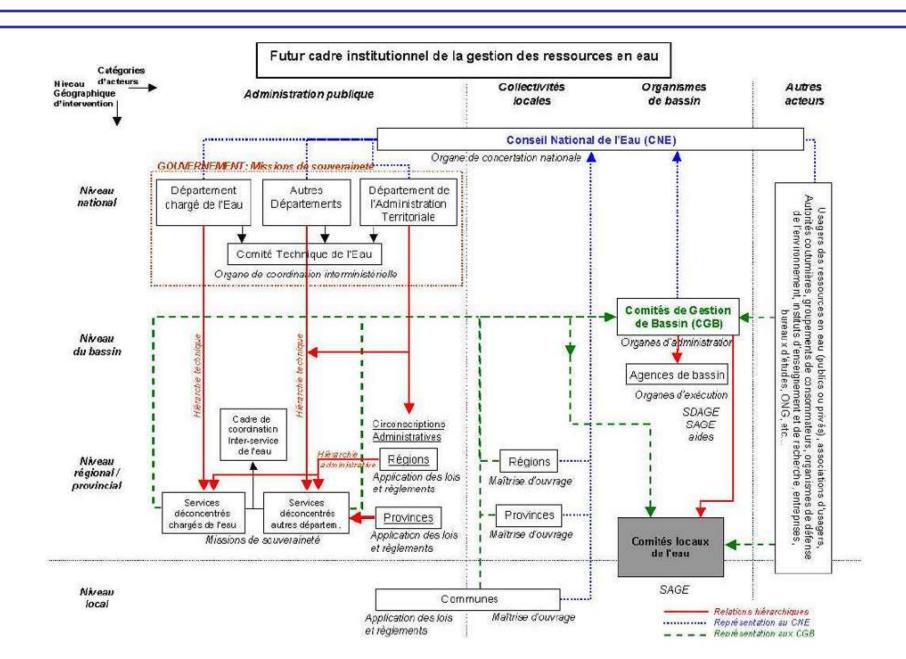
This presentation will discuss:

- A case study of water resource management in a context characterized by climate uncertainty, resource scarcity, and user conflict
- The participatory development of a decision support tool meant to facilitate consensual management of water resources
- The evolving context of **water governance** in which information is introduced and used in negotiating water management decisions

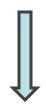
Water Governance



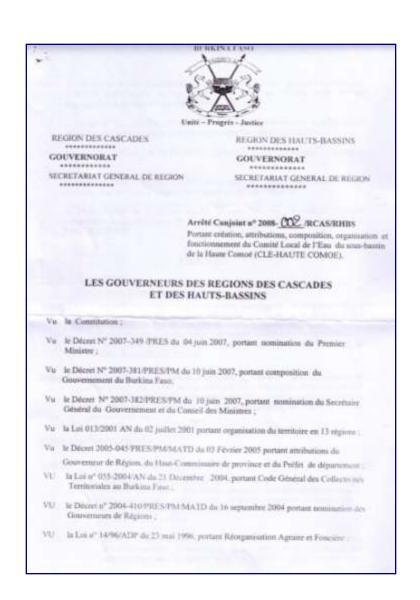
Water Governance – GIRE in Burkina Faso


A survey of almost 100 countries ranks Burkina Faso among the 20 most advanced cases of GIRE implementation

Countries that have plans/strategies in place, or a process well underway, and that incorporate the main elements of an IWRM approach.
Countries that are in the process of preparing national strategies or plans but require further work to live up to the requirements of an IWRM approach.
Countries that have taken only initial steps in the process towards preparing national strategies or plans and have not yet fully embraced the requirements of an IWRM approach.
Countries that have not submitted a survey reply, or been included in the survey.


Global Water Partnership 2006 Setting the Stage for Change

Water Governance - GIRE in Burkina Faso



Comité Local de l'Eau (CLE) Haute Comoé

Assemblé Générale Comité Restraint

Elected officials (mayors)
Technical services (ministries)
Civil society organizations
User representatives

Water Governance – IWRM in Upper Comoé

Examples of CLE deliberation outcomes

- July 2010: SOSUCO agree to release water during prolonged dry spell to allow farmers to irrigate rice plots
- Feb 2011: After poor rainy season, farmers agree to postpone rice planting to allow SOSUCO to irrigate its sugar cane fields
- Jan 2012: Due to drought and dam problems, CLE proposes that deficit is split equally among users and planted acreages be reduced accordingly

Interviews	
Institutional representatives	
CLE members (CR+AG)	
Cooperative members	
Riparian farmers	
Livestock owners	
Fishermen	
Urban users	
Total	82

- One user (SOSUCO) has monopoly of key data needed for water management decisions
- Limited technical competence means lack of transparency in how data is analyzed and applied to decisions
- Scientific instrumentation for measuring water levels at key points of the system is lacking
- Independent verification of water availability and amounts released is constrained by lack of resources
- Scale of downstream riparian agriculture and other demands are poorly appreciated and quantified
- Water losses due to poor state and multiple uses of canal water are not estimated

- One user (SOSUCO) has monopoly of key data needed for water management decisions
- Limited technical competence means lack of transparency in how data is analyzed and applied to decisions
- Scientific instrumentation for measuring water levels at key points of the system is lacking
- Independent verification of water availability and amounts released is constrained by lack of resources
- Scale of downstream riparian agriculture and other demands are poorly appreciated and quantified
- Water losses due to poor state and multiple uses of canal water are not estimated

- One user (SOSUCO) has monopoly of key data needed for water management decisions
- Limited technical competence means lack of transparency in how data is analyzed and applied to decisions
- Scientific instrumentation for measuring water levels at key points of the system is lacking
- Independent verification of water availability and amounts released is constrained by lack of resources
- Scale of downstream riparian agriculture and other demands are poorly appreciated and quantified
- Water losses due to poor state and multiple uses of canal water are not estimated

Information processes

- One user (SOSUCO) has monopoly of key data needed for water management decisions
- Limited technical competence means lack of transparency in how data is analyzed and applied to decisions
- Scientific instrumentation for measuring water levels at key points of the system is lacking

SOSUCO

- Independent verification of water a released is constrained by lack of re
- Scale of downstream riparian agric demands are poorly appreciated at
- Water losses due to poor state and water are not estimated

- One user (SOSUCO) has monopoly of key data needed for water management decisions
- Limited technical competence means lack of transparency in how data is analyzed and applied to decisions
- Scientific instrumentation for measuring water levels at key points of the system is lacking
- Independent verification of water availability and amounts released is constrained by lack of resources
- Scale of downstream riparian agriculture and other demands are poorly appreciated and quantified
- Water losses due to poor state and multiple uses of canal water are not estimated

- One user (SOSUCO) has monopoly of key data needed for water management decisions
- Limited technical competence means lack of transparency in how data is analyzed and applied to decisions
- Scientific instrumentation for measuring water levels at key points of the system is lacking
- Independent verification of water availability and amounts released is constrained by lack of resources
- Scale of downstream riparian agriculture and other demands are poorly appreciated and quantified
- Water losses due to poor state and multiple uses of canal water are not estimated

- One user (SOSUCO) has monopoly of key data needed for water management decisions
- Limited technical competence means lack of transparency in how data is analyzed and applied to decisions
- Scientific instrumentation for measuring water levels at key points of the system is lacking
- Independent verification of water availability and amounts released is constrained by lack of resources
- Scale of downstream riparian agriculture and other demands are poorly appreciated and quantified
- Water losses due to poor state and multiple uses of canal water are not estimated

- Discussion are in French, with occasional summary translation in local language for farmers
- Awareness (and, therefore, legitimacy) of CLE and GIRE policy is very low in rural areas and even in town
- Meetings are often convened at short notice, and attended by a few key actors
- State authorities (rather than CLE leadership) play key role in convening, moderating meetings
- State authorities mediate most conflicts, "begging"
 SOSUCO on farmers' behalf
- The CLE operations are largely supported by SOSUCO financial contributions

- Discussion are in French, with occasional summary translation in local language for farmers
- Awareness (and, therefore, legitimacy) of CLE and GIRE policy is very low in rural areas and even in town
- Meetings are often convened at short notice, and attended by a few key actors
- State authorities (rather than CLE leadership) play key role in convening, moderating meetings
- State authorities mediate most conflicts, "begging" SOSUCO on farmers' behalf
- The CLE operations are largely supported by SOSUCO financial contributions

- Discussion are in French, with occasional summary translation in local language for farmers
- Awareness (and, therefore, legitimacy) of CLE and GIRE policy is very low in rural areas and even in town
- Meetings are often convened at short notice, and attended by a few key actors
- State authorities (rather than CLE leadership) play key role in convening, moderating meetings
- State authorities mediate most conflicts, "begging"
 SOSUCO on farmers' behalf
- The CLE operations are largely supported by SOSUCO financial contributions

- Discussion are in French, with occasional summary translation in local language for farmers
- Awareness (and, therefore, legitimacy) of CLE and GIRE policy is very low in rural areas and even in town
- Meetings are often convened at short notice, and attended by a few key actors
- State authorities (rather than CLE leadership) play key role in convening, moderating meetings
- State authorities mediate most conflicts, "begging" SOSUCO on farmers' behalf
- The CLE operations are largely supported by SOSUCO financial contributions

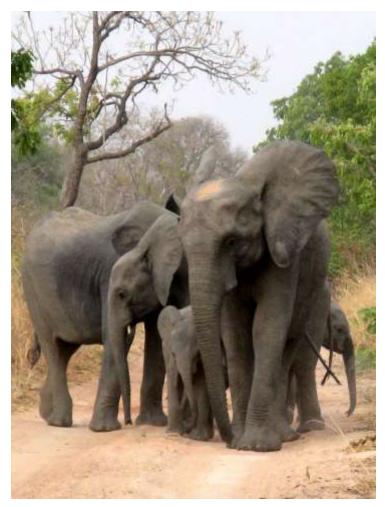
- Discussion are in French, with occasional summary translation in local language for farmers
- Awareness (and, therefore, legitimacy) of CLE and GIRE policy is very low in rural areas and even in town
- Meetings are often convened at short notice, and attended by a few key actors
- State authorities (rather than CLE leadership) play key role in convening, moderating meetings
- State authorities mediate most conflicts, "begging"
 SOSUCO on farmers' behalf
- The CLE operations are largely supported by SOSUCO financial contributions

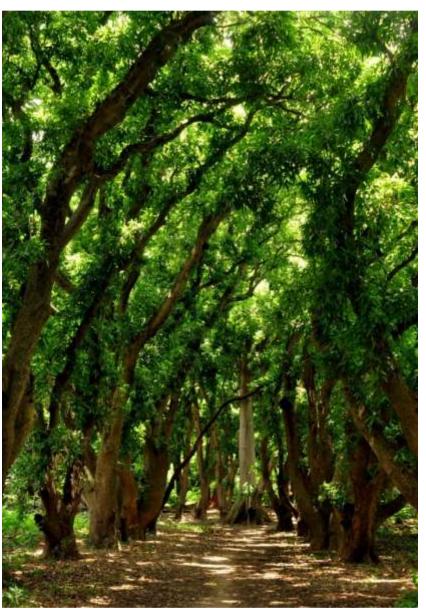
- Discussion are in French, with occasional summary translation in local language for farmers
- Awareness (and, therefore, legitimacy) of CLE and GIRE policy is very low in rural areas and even in town
- Meetings are often convened at short notice, and attended by a few key actors
- State authorities (rather than CLE leadership) play key role in convening, moderating meetings
- State authorities mediate most conflicts, "begging" SOSUCO on farmers' behalf
- The CLE operations are largely supported by SOSUCO financial contributions

- Discussion are in French, with occasional summary translation in local language for farmers
- Awareness (and, therefore, legitimacy) of CLE and GIRE policy is very low in rural areas and even in town
- Meetings are often convened at short notice, and attended by a few key actors
- State authorities (rather than CLE leadership) play key role in convening, moderating meetings
- State authorities mediate most conflicts, "begging" SOSUCO on farmers' behalf
- The CLE operations are largely supported by SOSUCO financial contributions

Ambiguities & contradictions

- Decentralization
- Food security
- Stream bank protection
- Mining




Blind spots

- Access to water points by livestock and wildlife
- Water quality, pollution
- Ecosystem transformation
- Cultural values, sense of place
- Land tenure

- GIRE is recognized as an important instrument of climate change adaptation and management of resulting *water* scarcity and conflict
- *Decision support tools* can assist GIRE but require reliable instrumentation, regular verification, transparence in data management, and incorporation of all needs and uses
- Building *institutional capacity* is essential for both technical and governance aspects of water management, particularly among resident users
- The *water governance context* must be better understood, especially how actual decisions are made, and what and who is left out of the process
- GIRE must articulate more consistently with *sectoral* policies, economic processes, and decentralization

- GIRE is recognized as an important instrument of climate change adaptation and management of resulting *water scarcity and conflict*
- *Decision support tools* can assist GIRE but require reliable instrumentation, regular verification, transparence in data management, and incorporation of all needs and uses
- Building *institutional capacity* is essential for both technical and governance aspects of water management, particularly among resident users
- The *water governance context* must be better understood, especially how actual decisions are made, and what and who is left out of the process
- GIRE must articulate more consistently with *sectoral* policies, economic processes, and decentralization

- GIRE is recognized as an important instrument of climate change adaptation and management of resulting *water scarcity and conflict*
- *Decision support tools* can assist GIRE but require reliable instrumentation, regular verification, transparence in data management, and incorporation of all needs and uses
- Building *institutional capacity* is essential for both technical and governance aspects of water management, particularly among resident users
- The *water governance context* must be better understood, especially how actual decisions are made, and what and who is left out of the process
- GIRE must articulate more consistently with *sectoral* policies, economic processes, and decentralization

- GIRE is recognized as an important instrument of climate change adaptation and management of resulting *water scarcity and conflict*
- *Decision support tools* can assist GIRE but require reliable instrumentation, regular verification, transparence in data management, and incorporation of all needs and uses
- Building *institutional capacity* is essential for both technical and governance aspects of water management, particularly among local users and elected officials
- The *water governance context* must be better understood, especially how actual decisions are made, and what and who is left out of the process
- GIRE must articulate more consistently with *sectoral* policies, economic processes, and decentralization

- GIRE is recognized as an important instrument of climate change adaptation and management of resulting *water scarcity and conflict*
- *Decision support tools* can assist GIRE but require reliable instrumentation, regular verification, transparence in data management, and incorporation of all needs and uses
- Building *institutional capacity* is essential for both technical and governance aspects of water management, particularly among resident users
- The *water governance context* must be better understood, especially how actual decisions are made, and what and who is left out of the process
- GIRE must articulate more consistently with *sectoral* policies, economic processes, and decentralization

- GIRE is recognized as an important instrument of climate change adaptation and management of resulting *water scarcity and conflict*
- *Decision support tools* can assist GIRE but require reliable instrumentation, regular verification, transparence in data management, and incorporation of all needs and uses
- Building *institutional capacity* is essential for both technical and governance aspects of water management, particularly among resident users
- The *water governance context* must be better understood, especially how actual decisions are made, and what and who is left out of the process
- GIRE must be more consistently integrated with *sectoral policies* and *decentralization*

Center for Research on Environmental Decisions

EARTH INSTITUTE | COLUMBIA UNIVERSITY

CRED Communications Guide!
The Psychology of Climate Change
Communication

CRED Wiki (registered users only)

About CRED

Research

Partnerships

News & Events

For Decision & Policy Makers

For Students & Teachers

NEWS & EVENTS

CRED Co-Director Ben Orlove travels to Antarctica

Read more about the February 2012 expedition on board the M.S. Le Boréal with Columbia alumni, here.

CRED co-hosts Artist/Scientist Mixer Partnering on the Climate

Read more about this PositiveFeedback event held at the Isamu Noguchi Museum on February 12, here.

CRED Co-Director Elke Weber speaks at Falling Walls

German Chancellor Angela Merkel cites her work as critical contribution to